STM32通过SPI硬件读写W25Q64

文章目录

1. W25Q64

2. 硬件电路

3. 软件/硬件波形对比

4. STM32中的SPI外设

5. 代码实现

5.1 MyI2C.c

5.2 MyI2C.h

5.3 W25Q64.c

5.4 W25Q64.h

5.5 W25Q64_Ins.h

5.6 main.c


1. W25Q64

对于SPI通信和W25Q64的详细解析可以看下面这篇文章

STM32单片机SPI通信详解-CSDN博客

对于STM32通过SPI软件读写W25Q64的代码,可以看下面这篇文章

STM32通过SPI软件读写W25Q64-CSDN博客

W25Qxx系列是一种低成本、小型化、使用简单的非易失性存储器,常应用于数据存储、字库存储、固件程序存储等场景

存储介质:Nor Flash(闪存)

时钟频率:80MHz / 160MHz (Dual SPI) / 320MHz (Quad SPI)

存储容量(24位地址):

  W25Q40:    4Mbit / 512KByte

  W25Q80:    8Mbit / 1MByte

  W25Q16:    16Mbit / 2MByte

  W25Q32:    32Mbit / 4MByte

  W25Q64:    64Mbit / 8MByte

  W25Q128:  128Mbit / 16MByte

  W25Q256:  256Mbit / 32MByte

地址设计

  • 地址位数:指用于寻址的二进制位数。在计算机系统中,每个内存单元都有一个唯一的地址,通过地址可以访问和引用内存中的数据或指令。
  • 地址总线:用于地址传输的总线。W25Q64 的 24 位地址总线意味着它可以访问 2^24 个地址,即 16,777,216 个字节(16MB)的空间。
  • 地址位数与存储容量:地址位数越多,能寻址的存储空间越大。例如,8 位地址可以寻址 256 个字节,16 位地址可以寻址 65,536 个字节(64KB)。

W25Q64 的存储空间

  • 存储容量:W25Q64 具体的存储容量为 64Mbit,即 8MB,但其地址总线的设计可以支持更大的寻址空间。
  • 数据组织:存储器通常按字节组织,每个字节有唯一的地址。W25Q64 可以通过 24 位地址总线访问每个字节,这使得数据读写操作更加灵活和高效。

2. 硬件电路

引脚功能

VCC、GND

电源(2.7~3.6V)

CS(SS)

SPI片选

CLK(SCK)

SPI时钟

DI(MOSI)

SPI主机输出从机输入

DO(MISO)

SPI主机输入从机输出

WP

写保护

HOLD

数据保持

WP(Write Protect):写保护

WP 引脚用于实现硬件写保护功能。WP 引脚为低电平时,写保护有效,无法进行写操作;WP 引脚为高电平时,可以进行写操作。

HOLD:数据保持

HOLD 引脚为低电平时,芯片进入保持状态。当在进行正常的读写操作时,如果需要中断 SPI 通信以操作其他设备,可以将 HOLD 引脚置为低电平。此时,芯片会保持当前状态但释放总线控制权。这样可以在不中断当前操作的前提下,使用 SPI 总线与其他设备通信。操作完毕后,将 HOLD 引脚置为高电平,芯片将恢复并继续之前的操作。这个功能允许在不终止总线操作的情况下,实现 SPI 总线的中断处理。

3. 软件/硬件波形对比

硬件数据波形变化紧贴SCK边沿 软件数据变化在边沿后有些延迟。

I2C:SCL低电平期间数据变化,高电平期间数据采样 SPI:SCK下降沿数据移出,上升沿数据移入。 两者最终波形的表现形式都是一样的,无论是下降沿变化还是低电平期间变化,它们都 是一个意思,都可以作为数据变化的时刻。

4. STM32中的SPI外设

STM32内部集成了硬件SPI收发电路,可以由硬件自动执行时钟生成、数据收发等功能,减轻CPU的负担,可配置8位/16位数据帧、高位先行/低位先行

时钟频率: fPCLK / (2, 4, 8, 16, 32, 64, 128, 256)

支持多主机模型、主或从操作

可精简为半双工/单工通信

支持DMA

兼容I2S协议

STM32F103C8T6 硬件SPI资源:SPI1、SPI2

5. 代码实现

硬件SPI读写W25Q64

硬件SPI配置步骤

在软件读写I2C的基础上进行改写,以适应硬件读写SPI的需求。以下是详细步骤:

  1. 保留SS引脚的GPIO软件模拟:使用GPIO软件模拟保留SS(Slave Select)引脚的功能。
  2. 初始化SPI外设:配置SPI外设的相关参数。
  3. 交换一个字节的操作流程:具体操作流程如下:
    • 开启SPI和GPIO时钟:确保SPI外设和GPIO端口的时钟已开启。
    • 初始化GPIO端口
      • SCK和MOSI:这些是由硬件外设控制的输出信号,需要配置为复用推挽输出模式。
      • MISO:这是硬件外设的输入信号,需要配置为上拉输入模式。由于输入设备可以有多个,因此不存在复用输入的情况。普通GPIO口和外设都可以进行输入操作。
      • SS引脚:这是由软件控制的输出信号,需要配置为通用推挽输出模式。
    • 配置SPI外设:使用结构体对SPI外设进行配置,设定相应的参数。
    • 开关控制:使用SPI_Cmd函数来开启或关闭SPI外设。

5.1 MyI2C.c

#include "stm32f10x.h"                  // Device header/*** 函    数:SPI写SS引脚电平,SS仍由软件模拟* 参    数:BitValue 协议层传入的当前需要写入SS的电平,范围0~1* 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置SS为低电平,当BitValue为1时,需要置SS为高电平*/
void MySPI_W_SS(uint8_t BitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_4, (BitAction)BitValue);		//根据BitValue,设置SS引脚的电平
}//SPI初始化
void MySPI_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);	//开启SPI1的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA4引脚初始化为推挽输出GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_7;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA5和PA7引脚初始化为复用推挽输出GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA6引脚初始化为上拉输入/*SPI初始化*/SPI_InitTypeDef SPI_InitStructure;						//定义结构体变量SPI_InitStructure.SPI_Mode = SPI_Mode_Master;			//模式,选择为SPI主模式SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;	//方向,选择2线全双工SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;		//数据宽度,选择为8位SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;		//先行位,选择高位先行SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_128;	//波特率分频,选择128分频SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;				//SPI极性,选择低极性SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;			//SPI相位,选择第一个时钟边沿采样,极性和相位决定选择SPI模式0SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;				//NSS,选择由软件控制SPI_InitStructure.SPI_CRCPolynomial = 7;				//CRC多项式,暂时用不到,给默认值7SPI_Init(SPI1, &SPI_InitStructure);						//将结构体变量交给SPI_Init,配置SPI1/*SPI使能*/SPI_Cmd(SPI1, ENABLE);									//使能SPI1,开始运行/*设置默认电平*/MySPI_W_SS(1);											//SS默认高电平
}//SPI起始
void MySPI_Start(void)
{MySPI_W_SS(0);				//拉低SS,开始时序
}//SPI终止
void MySPI_Stop(void)
{MySPI_W_SS(1);				//拉高SS,终止时序
}/*** 函    数:SPI交换传输一个字节,使用SPI模式0* 参    数:ByteSend 要发送的一个字节* 返 回 值:接收的一个字节*/
uint8_t MySPI_SwapByte(uint8_t ByteSend)
{while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) != SET);	//等待发送数据寄存器空SPI_I2S_SendData(SPI1, ByteSend);								//写入数据到发送数据寄存器,开始产生时序while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) != SET);	//等待接收数据寄存器非空return SPI_I2S_ReceiveData(SPI1);								//读取接收到的数据并返回
}

5.2 MyI2C.h

#ifndef __MYSPI_H
#define __MYSPI_Hvoid MySPI_Init(void);
void MySPI_Start(void);
void MySPI_Stop(void);
uint8_t MySPI_SwapByte(uint8_t ByteSend);#endif

5.3 W25Q64.c

#include "stm32f10x.h"                  // Device header
#include "MySPI.h"
#include "W25Q64_Ins.h"//W25Q64初始化
void W25Q64_Init(void)
{MySPI_Init();					//先初始化底层的SPI
}/*** 函    数:MPU6050读取ID号* 参    数:MID 工厂ID,使用输出参数的形式返回* 参    数:DID 设备ID,使用输出参数的形式返回*/
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID)
{MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_JEDEC_ID);			//交换发送读取ID的指令*MID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//交换接收MID,通过输出参数返回*DID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//交换接收DID高8位*DID <<= 8;									//高8位移到高位*DID |= MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//或上交换接收DID的低8位,通过输出参数返回MySPI_Stop();								//SPI终止
}//W25Q64写使能
void W25Q64_WriteEnable(void)
{MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_WRITE_ENABLE);		//交换发送写使能的指令MySPI_Stop();								//SPI终止
}//W25Q64等待忙
void W25Q64_WaitBusy(void)
{uint32_t Timeout;MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);				//交换发送读状态寄存器1的指令Timeout = 100000;							//给定超时计数时间while ((MySPI_SwapByte(W25Q64_DUMMY_BYTE) & 0x01) == 0x01)	//循环等待忙标志位{Timeout --;								//等待时,计数值自减if (Timeout == 0)						//自减到0后,等待超时{/*超时的错误处理代码,可以添加到此处*/break;								//跳出等待,不等了}}MySPI_Stop();								//SPI终止
}/*** 函    数:W25Q64页编程* 参    数:Address 页编程的起始地址,范围:0x000000~0x7FFFFF* 参    数:DataArray	用于写入数据的数组* 参    数:Count 要写入数据的数量,范围:0~256* 注意事项:写入的地址范围不能跨页*/
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count)
{uint16_t i;W25Q64_WriteEnable();						//写使能MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_PAGE_PROGRAM);		//交换发送页编程的指令MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位MySPI_SwapByte(Address);					//交换发送地址7~0位for (i = 0; i < Count; i ++)				//循环Count次{MySPI_SwapByte(DataArray[i]);			//依次在起始地址后写入数据}MySPI_Stop();								//SPI终止W25Q64_WaitBusy();							//等待忙
}/*** 函    数:W25Q64扇区擦除(4KB)* 参    数:Address 指定扇区的地址,范围:0x000000~0x7FFFFF* 返 回 值:无*/
void W25Q64_SectorErase(uint32_t Address)
{W25Q64_WriteEnable();						//写使能MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);	//交换发送扇区擦除的指令MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位MySPI_SwapByte(Address);					//交换发送地址7~0位MySPI_Stop();								//SPI终止W25Q64_WaitBusy();							//等待忙
}/*** 函    数:W25Q64读取数据* 参    数:Address 读取数据的起始地址,范围:0x000000~0x7FFFFF* 参    数:DataArray 用于接收读取数据的数组,通过输出参数返回* 参    数:Count 要读取数据的数量,范围:0~0x800000* 返 回 值:无*/
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count)
{uint32_t i;MySPI_Start();								//SPI起始MySPI_SwapByte(W25Q64_READ_DATA);			//交换发送读取数据的指令MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位MySPI_SwapByte(Address);					//交换发送地址7~0位for (i = 0; i < Count; i ++)				//循环Count次{DataArray[i] = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//依次在起始地址后读取数据}MySPI_Stop();								//SPI终止
}

5.4 W25Q64.h

#ifndef __W25Q64_H
#define __W25Q64_Hvoid W25Q64_Init(void);
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID);
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count);
void W25Q64_SectorErase(uint32_t Address);
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count);#endif

5.5 W25Q64_Ins.h

#ifndef __W25Q64_INS_H
#define __W25Q64_INS_H#define W25Q64_WRITE_ENABLE							0x06
#define W25Q64_WRITE_DISABLE						0x04
#define W25Q64_READ_STATUS_REGISTER_1				0x05
#define W25Q64_READ_STATUS_REGISTER_2				0x35
#define W25Q64_WRITE_STATUS_REGISTER				0x01
#define W25Q64_PAGE_PROGRAM							0x02
#define W25Q64_QUAD_PAGE_PROGRAM					0x32
#define W25Q64_BLOCK_ERASE_64KB						0xD8
#define W25Q64_BLOCK_ERASE_32KB						0x52
#define W25Q64_SECTOR_ERASE_4KB						0x20
#define W25Q64_CHIP_ERASE							0xC7
#define W25Q64_ERASE_SUSPEND						0x75
#define W25Q64_ERASE_RESUME							0x7A
#define W25Q64_POWER_DOWN							0xB9
#define W25Q64_HIGH_PERFORMANCE_MODE				0xA3
#define W25Q64_CONTINUOUS_READ_MODE_RESET			0xFF
#define W25Q64_RELEASE_POWER_DOWN_HPM_DEVICE_ID		0xAB
#define W25Q64_MANUFACTURER_DEVICE_ID				0x90
#define W25Q64_READ_UNIQUE_ID						0x4B
#define W25Q64_JEDEC_ID								0x9F
#define W25Q64_READ_DATA							0x03
#define W25Q64_FAST_READ							0x0B
#define W25Q64_FAST_READ_DUAL_OUTPUT				0x3B
#define W25Q64_FAST_READ_DUAL_IO					0xBB
#define W25Q64_FAST_READ_QUAD_OUTPUT				0x6B
#define W25Q64_FAST_READ_QUAD_IO					0xEB
#define W25Q64_OCTAL_WORD_READ_QUAD_IO				0xE3#define W25Q64_DUMMY_BYTE							0xFF#endif

5.6 main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "W25Q64.h"uint8_t MID;							//定义用于存放MID号的变量
uint16_t DID;							//定义用于存放DID号的变量uint8_t ArrayWrite[] = {0x01, 0x02, 0x03, 0x04};	//定义要写入数据的测试数组
uint8_t ArrayRead[4];								//定义要读取数据的测试数组int main(void)
{/*模块初始化*/OLED_Init();						//OLED初始化W25Q64_Init();						//W25Q64初始化/*显示静态字符串*/OLED_ShowString(1, 1, "MID:   DID:");OLED_ShowString(2, 1, "W:");OLED_ShowString(3, 1, "R:");/*显示ID号*/W25Q64_ReadID(&MID, &DID);			//获取W25Q64的ID号OLED_ShowHexNum(1, 5, MID, 2);		//显示MIDOLED_ShowHexNum(1, 12, DID, 4);		//显示DID/*W25Q64功能函数测试*/W25Q64_SectorErase(0x000000);					//扇区擦除W25Q64_PageProgram(0x000000, ArrayWrite, 4);	//将写入数据的测试数组写入到W25Q64中W25Q64_ReadData(0x000000, ArrayRead, 4);		//读取刚写入的测试数据到读取数据的测试数组中/*显示数据*/OLED_ShowHexNum(2, 3, ArrayWrite[0], 2);		//显示写入数据的测试数组OLED_ShowHexNum(2, 6, ArrayWrite[1], 2);OLED_ShowHexNum(2, 9, ArrayWrite[2], 2);OLED_ShowHexNum(2, 12, ArrayWrite[3], 2);OLED_ShowHexNum(3, 3, ArrayRead[0], 2);			//显示读取数据的测试数组OLED_ShowHexNum(3, 6, ArrayRead[1], 2);OLED_ShowHexNum(3, 9, ArrayRead[2], 2);OLED_ShowHexNum(3, 12, ArrayRead[3], 2);while (1){}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/31800.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java宝藏实验资源库(8)多态、抽象类和接口

一、实验目的 理解面向对象程序的基本概念。掌握类的继承和多态的实现机制。熟悉抽象类和接口的用法。 二、实验内容、过程及结果 **1.Using the classes defined in Listing 13.1, 13.2, 13.3, write a test program that creates an array of some Circle and Rectangle in…

轨道地铁智能录音无线通信解决方案

一、行业背景 随着社会经济和通信行业的迅速发展&#xff0c;电话已成为企业运作中必不可少的联络手段。但电话作为即时沟通手段&#xff0c;往往无法进行事后追溯和复盘&#xff0c;容易造成不必要的麻烦。尤其在交通轨交行业领域&#xff0c;对语音工作的发生过程更需要有个…

全栈人工智能工程师:现代博学者

任何在团队环境中工作过的人都知道&#xff0c;每个成功的团队都有一个得力助手——无论你的问题性质如何&#xff0c;他都能帮助你。在传统的软件开发团队中&#xff0c;这个人是一个专业的程序员&#xff0c;也是另一种技术的专家&#xff0c;可以是像Snowflake这样的数据库技…

基于STM8系列单片机驱动74HC595驱动两个3位一体的数码管

1&#xff09;单片机/ARM硬件设计小知识&#xff0c;分享给将要学习或者正在学习单片机/ARM开发的同学。 2&#xff09;内容属于原创&#xff0c;若转载&#xff0c;请说明出处。 3&#xff09;提供相关问题有偿答疑和支持。 为了节省单片机MCU的IO口资源驱动6个数码管&…

CAC 2.0融合智谱AI大模型,邮件安全新升级

在数字化时代&#xff0c;电子邮件的安全问题日益成为关注的焦点。Coremail CACTER邮件安全人工智能实验室&#xff08;以下简称“CACTER AI实验室”&#xff09;凭借其在邮件安全领域的深入研究与创新实践&#xff0c;不断推动技术进步。 此前&#xff0c;CACTER AI实验室已获…

docker进阶篇

docker进阶篇 (重点) 1、docker run2、docker ps3、docker restart4、docker pull5、docker stop6、docker logs7、docker stats8、docker rm(重点) 9、docker exec10、查看本机镜像docker image11、发布镜像docker commit12、docker save(例如保存为tar给别人用)13、删除镜像1…

【2024最新精简版】网络_Linux操作系统面试篇

文章目录 简述 tcp 和 udp的区别&#xff1f;get 和 post 请求有哪些区别&#xff1f;常用HTTP请求方式有哪些 ?进程跟线程的区别&#xff1f;僵尸进程&#xff1f;IO的多路复用&#xff1f;虚拟内存什么是OSI模型说一说HTTP协议说一说HTTPS协议HTTPS协议和HTTP协议有什么区别…

C语言 | Leetcode C语言题解之第172题阶乘后的零

题目&#xff1a; 题解&#xff1a; int trailingZeroes(int n) {int ans 0;while (n) {n / 5;ans n;}return ans; }

【MAUI】resource xml/file_paths (aka com.xxx.xxx:xml/ file _paths) not found.

APP2260:resource xml/file_paths (aka com.zettlercn.wms:xml/ file _paths) not found. This error is likely caused by an issue with the AndroidManifest.xml file or an Android manifest generation attribute in a source code file MAUI从6.0升级到8.0,调试发现资源…

安卓逆向案例——X酷APP逆向分析

X酷APP逆向分析 这里介绍一下两种不同的挂载证书的方法。 chls.pro/ssl无法在浏览器中下载证书是什么原因解决方法&#xff1a; 法一 1. 挂载系统分区为读写 使用正确的挂载点来挂载系统分区为读写&#xff1a; su mount -o remount,rw /dev/uijISjR/.magisk/block/syste…

前端 CSS 经典:旋转边框效果

效果&#xff1a; 思路&#xff1a;使用伪元素&#xff0c;给伪元素设置背景色&#xff0c;然后定位&#xff0c;遮盖&#xff0c;旋转。就可以实现旋转边框效果。 实现代码&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta chars…

docker in docker 在CI中应用解析

docker in docker 简介 docker里嵌套运行docker&#xff0c;本文讲解其在jenkins和gitlab-runner 种的调用流程 一、用于jenkins 容器化部署jenkins时调用docker命令集成CI功能 [rootops-demo~]# docker inspect jenkins --format"{{json .Mounts}}" [{"T…

电子竞赛1——基于DDS的AM信号发生器

课题要求 产生AM调幅波&#xff1b; 要求&#xff1a;载波10K&#xff0c;被调制波1K&#xff1b; 短按键1&#xff08;pin_143&#xff09;改变该调幅波的调制度&#xff1a;25%、50%、75%&#xff1b; 长按按键1&#xff08;pin_143&#xff09;改变被调制信号频率&#…

STM32通过SPI软件读写W25Q64

文章目录 1. W25Q64 2. 硬件电路 3. W25Q64框架图 4. 软件/硬件波形对比 5. 代码实现 5.1 MyI2C.c 5.2 MyI2C.h 5.3 W25Q64.c 5.4 W25Q64.h 5.5 W25Q64_Ins.h 5.6 main.c 1. W25Q64 对于SPI通信和W25Q64的详细解析可以看下面这篇文章 STM32单片机SPI通信详解-CSDN博…

工作实践:11种API性能优化方法

一、索引优化 接口性能优化时&#xff0c;大家第一个想到的通常是&#xff1a;优化索引。 确实&#xff0c;优化索引的成本是最小的。 你可以通过查看线上日志或监控报告&#xff0c;发现某个接口使用的某条SQL语句耗时较长。 此时&#xff0c;你可能会有以下疑问&#xff…

Web渗透:XSS-DOM-based XSS

DOM-based XSS&#xff08;基于DOM的跨站脚本攻击&#xff09;是一种XSS攻击类型&#xff0c;其特点是恶意脚本通过操作文档对象模型&#xff08;DOM&#xff09;直接在客户端执行&#xff0c;而无需经过服务器的处理。这种攻击主要利用客户端JavaScript代码中的漏洞&#xff0…

BP神经网络-入门到理解-长文讲述

本文来自&#xff1a;老饼讲解-BP神经网络 https://www.bbbdata.com 目录 一、BP神经网络的仿生意义 二、BP神经网络的结构 三、BP神经网络的前馈与后馈 3.1 BP神经网络的前馈 3.2 什么是BP神经网络的后馈 四、BP神经网络的训练 4.1 BP神经网络归一化 4.2 梯度下降算法…

完胜PSP的神器

小鸡模拟器&#xff0c;顾名思义&#xff0c;它是一个能够模拟多种经典游戏平台的软件&#xff0c;从家用游戏机到掌上游戏机&#xff0c;几乎覆盖了所有知名的老式游戏设备。这意味着&#xff0c;通过小鸡模拟器&#xff0c;我们可以在手机上重温那些陪伴我们度过童年时光的经…

springboot学习-图灵课堂-最详细学习

springboot-repeat springBoot学习代码说明为什么java -jar springJar包后项目就可以启动 配置文件介绍 springBoot学习 依赖引入 <properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.target>8</mav…

【教程】PVE下uhd630核显直通HDMI输出 以NUC9为例村雨Murasame

大家好&#xff0c;村雨本雨又来发教程了 最近在搞小主机&#xff0c;之前hp400g3仅仅200多元成功核显直通HDMI&#xff0c;作为简单NAS、解码机、伺服机、中控都非常棒&#xff0c;待机仅9w 村雨Murasame&#xff1a;【教程】7代核显直通HDMI成功输出画面 PVE下7代intel核显…