物理层概述:
物理层是网络体系结构中的最低层
它既不是指连接计算机的具体物理设备,也不是指负责信号传输的具体物理介质, 而是指在连接开放系统的物理媒体上为上一层(指数据链路层)提供传送比特流的一个物理连接。
物理层的主要功能——为它的服务用户(即数据链路层的实体)在具体的物理媒体上提供“透明”传输比特流的能力。
物理层的作用——尽可能屏蔽计算机网络使用的物理设备、传输介质和通信方式的差异,使得数据链路层不必去考虑物理设备和传输介质的具体特性,而只要考虑完成本层的协议和服务。
物理层的协议与具体的物理设备、传输媒体及通信手段有关。用于物理层的协议也常称为规程。
物理层的许多协议是在OSI/RM公布以前制定的,并没有用OSI术语进行描述,只能将物理层实现的主要功能描述为与传输媒体接口有关的四个重要特性:机械特性、电气特性、功能特性 、规程特性
物理层接口特性
物理层协议实际上是DTE与DCE之间的一组约定。这组约定规定了DTE与DCE之间标准接口特性。
数据传输通常是经过DTE-DCE,再经过DCE-DTE的路径
DTE(Data Terminal Equipment) 数据终端设备的英文缩写,它是一种具有一定的数据处理和转发能力的设备。DTE可以是一台计算机、终端或各种I/O设备。
DCE(Data Circuit-Terminating Equipment数据电路终接设备) 在DTE和传输线路之间提供信号变换和编码的功能,并且负责建立、保持和释放数据链路的设备。典型的DCE,如调制解调器(modem)。
DTE/DCE接口是标准化的。它具有机械、电气、功能和规程四个方面的特性。
机械特性
指明接口所用接线器的形状和尺寸、引线数目和排列、固定和锁定装置等。
常用的标准接口:
ISO 2110 数据通信--25芯DTE/DCE接口接线器及引线分配。用于串行和并行音频调制解调器、公用数据网接口、电报(包括用户电报)接口和自动呼叫设备。
ISO 2593 高速数据终端设备用接线器和引线分配。34芯接线器用于V.35(通用终端接口的规定)宽带MODEM
ISO 4902 数据通信-37芯和9芯DTE/DCE接口接线器及引线分配,用于串行音频和宽带调制解调器。
ISO 4903 数据通信-15芯DTE/DCE接口接线器及引线分配 。用于X.20、X.21、X.22所规定的公用数据网接口。
ISO标准化的部分接线器
电气特性
指明在接口电缆的各条线上电气连接及有关电路特性,包括信号电平范围、阻抗、负载、速率和距离限制等。
如表5-1是普通电话交换网接口电气特性的主要规定
功能特性
主要对各接口信号线作出确切的功能定义以及相互间的操作关系。
对接口线按具有的功能多少,通常采有一线一义法(每根信号线定义一种功能)和一线多义法(每根信号线被定义为多种功能)。
信号线按其功能一般可分为四大类:数据线、控制线、定时线和接地线。常用的接口功能特性的标准有:EIA RS-232-C,EIA RS-449,ITU-T V.24等(见表5-3)。
规程特性
主要规定接口各信号线之间的相互关系、动作顺序以及维护测试操作等内容。反映了在数据通信过程中,通信双方可能发生的各种可能事件。
目前,用于物理层规程特性的标准有:ITU-T V.24、V.25、V.54、X.20、X.20bis、X.21、X.21bis、X.22、X.150等。 表5-4给出了EIA、ITU-T和ISO有关DTE/DCE主要接口标准及其兼容关系。
物理层的常用标准
(一)EIA RS-232
EIA RS-232是美国电子工业协会EIA于1962年制订的著名物理层异步通信接口标准。
RS-232-C接口的机械特性
使用25芯接线器(与ISO 2110兼容)。
在DTE侧采用针式(凸插头)结构,DCE侧采用孔式(凹插座)结构。
实际使用可采用芯针较少的9芯接线器。
RS-232-C接口的电气特性
采用单端发送单端接收、双极性电源供电,其逻辑1电平为-5V~-15V,逻辑0电平为+5V~+15V,详见表5-5。
RS-232-C的接口电平不能和TTL(晶体管-晶体管逻辑集成电路)、DTL(二极管-晶体管逻辑门电路)输出、输入的电平(1为2.4V,0为0.4V)相兼容,而必须外加传输线驱动/接收器实现电平的转换。RS-232-C的最大传输距离为15m。
RS-232-C接口的功能特性
信号线的功能定义见表5-6。信号线共20条,可分为四类:数据线(4条)、控制线(11条) 、定时线(3条)和地线(2条) 。其余5条是未定义或专用的。
RS-232-C接口有主、辅两种信道。辅信道用于在互连设备之间传送一些辅助的控制信息,通常很少使用,其速率低于主信道。
RS-232-C接口的规程特性
规程特性描述了在不同的条件下,各条信号线呈现“接通”(正电平,逻辑0)或“断开”(负电平,逻辑1)状态的顺序和关系。例如, DTE若想将数据发往传输线路,必须做到CC(数据设备就绪)、CD(数据终端就绪)、CA(请求发送)、CB(允许发送)这4条控制线全部呈“接通”状态,也就是既做到设备就绪,又做到线路就绪。
由于RS-232-C对许多用户环境有所限制,而用户又迫切要求改善原有特性,如提高速率、增大距离、追加某些必要的功能(如环回测试)等。于是,EIA于1987年将C版本修订为D版本,1991年又修订为E版本,1997年再修订为F版本。因各版本修订内容不多,许多厂商仍用为原来的旧名称RS-232-C。
(二)EIA RS-232
RS-232-C接口的电气特性
采用单端发送单端接收、双极性电源供电,其逻辑1电平为-5V~-15V,逻辑0电平为+5V~+15V,详见表5-5。
RS-232-C的接口电平不能和TTL(晶体管-晶体管逻辑集成电路)、DTL(二极管-晶体管逻辑门电路)输出、输入的电平(1为2.4V,0为0.4V)相兼容,而必须外加传输线驱动/接收器实现电平的转换。RS-232-C的最大传输距离为15m。
RS-232-C接口的功能特性
信号线的功能定义见表5-6。信号线共20条,可分为四类:数据线(4条)、控制线(11条) 、定时线(3条)和地线(2条) 。其余5条是未定义或专用的。
RS-232-C接口有主、辅两种信道。辅信道用于在互连设备之间传送一些辅助的控制信息,通常很少使用,其速率低于主信道。
RS-232-C接口的规程特性
规程特性描述了在不同的条件下,各条信号线呈现“接通”(正电平,逻辑0)或“断开”(负电平,逻辑1)状态的顺序和关系。例如, DTE若想将数据发往传输线路,必须做到CC(数据设备就绪)、CD(数据终端就绪)、CA(请求发送)、CB(允许发送)这4条控制线全部呈“接通”状态,也就是既做到设备就绪,又做到线路就绪。
由于RS-232-C对许多用户环境有所限制,而用户又迫切要求改善原有特性,如提高速率、增大距离、追加某些必要的功能(如环回测试)等。于是,EIA于1987年将C版本修订为D版本,1991年又修订为E版本,1997年再修订为F版本。因各版本修订内容不多,许多厂商仍用为原来的旧名称RS-232-C。
(三)EIA RS-449
EIA RS-449 是为替代EIA RS-232-C而提出的物理层标准接口。由 3 个标准组成。
RS-449 规定了接口的机械特性、功能特性的过程特性(相当于V.35)。
RS-423-A 规定采用非平衡传输时(即所有的电路共用一个公共地)的电气特性。
RS-422-A 规定采用平衡传输时(即所有的电路没有公共地)的电气特性。
RS-449接口的机械特性
使用37芯和9芯接线器,后者用于辅信道操作。
RS-449接口的电气特性
RS-423-A规定了采用差动接收的非平衡电气连接特性。信号电平采用±6V的负逻辑。当传输距离为100m时,速率为10kb/s;距离为10m时,速率为300kb/s。
RS-422-A规定了采用平衡电气连接特性,信号电平采用±6V 的负逻辑。传输距离为1000m时,速率为100kb/s;距离为10m时,速率可达10Mb/s。
RS-449接口的功能特性
对30条信号线作了功能性定义。与RS-232-C相比,新增的信号线主要是为了解决环回测试和其他功能的问题。
RS-449接口的规程特性
沿用了RS-232-C的规程特性。
RJ-45
1. RJ-45插头用于局域网与ADSL (Asymmetric Digital Subscriber Line非对称数据用户线)宽带上网用户的网络设备间 网线连接。
2.双绞线简介
最古老但又最常用的传输媒体。
把两根互相绝缘的铜导线并排放在一起,然后用规则的方法绞合 (twist) 起来就构成了双绞线。
绞合度越高,可用的数据传输率越高。
2 大类: