01、集合基础知识
.Net 中提供了一系列的管理对象集合的类型,数组、可变列表、字典等。从类型安全上集合分为两类,泛型集合 和 非泛型集合,传统的非泛型集合存储为Object,需要类型转。而泛型集合提供了更好的性能、编译时类型安全,推荐使用。
.Net中集合主要集中在下面几个命名空间中:
1.1、集合的起源:接口关系
-
天赋技能 —— foreach:几乎所有集合都可以用
foreach
循环操作,是因为他们都继承自IEnumerable
接口,由枚举器(IEnumerator)提供枚举操作。 -
几乎所有集合都提供添加、删除、计数,来自基础接口
ICollection
、ICollection<T>
。 -
IList
、IList<T>
提供了数组的索引器、查找、插入等操作,几乎所有具体的集合类型都实现了该接口。 -
Array 是一个抽象类,是所有数组
T[]
的基类,她是类型安全的。 -
推荐尽量使用数组T[]、泛型版的集合,提供了更好的类型安全和性能。
1.2、非泛型集合—— 还有什么存在的价值?
-
非泛型的
Hashtable
,Key、Value都是Object类型的,Dictionary 是泛型版本的 Hashtable。 -
ArrayList 是非泛型版本的
List<T>
,基本很少使用,也尽量不用。
❓既然非泛型版本类型不安全,性能还差,为什么还存在呢?
主要是历史原因,泛型是.Net2.0
引入的,因此为了向后兼容,依然保留的非泛型版本集合。在接口实现时,非泛型接口一般都是显示实现的,因此基本不会用到。不过在有些场景下,非泛型接口、集合还是有点用的,如类型不固定的集合,或者用接口作为约束条件或类型判断。
ArrayList arr = new ArrayList();
arr.Add(1);
arr.Add("sam");
arr.Add(new Point());
if (arr is IList) {}class User<T> where T :IList {}
1.3、Collection<T>
、List<T>
有何不同?
❓两者比较相似,他们到底有什么区别呢?该如何选择?
-
Collection<T>
作为自定义集合基类,内部提供了一些virtual
的实现,便于继承实现自己的集合类型。其内部集合用的就是List<T>
,如下部分源码 Collection.cs。 -
List<T>
作为集合使用,是最常用的可变长集合类型了,他优化了性能,但是丢失了可扩展性,没有提供任何可以override
的成员。
public class Collection<T>
{public Collection(){items = new List<T>();}protected virtual void InsertItem(int index, T item){items.Insert(index, item);}
}
02、枚举器——foreach的秘密!
foreach
用来循环迭代可枚举对象,用一种非常简洁、优雅的姿势访问可枚举元素。常用于数组、集合,当然不仅限于集合,只要符合要求枚举要求的都可以。
2.1、IEnumerator枚举器
枚举可以foreach
枚举的密码是他们都继承自IEnumerable
接口,而更重要的是其内部的枚举器 —— IEnumerator。枚举器IEnumerator
定义了向前遍历集合元素的基本协议,其申明如下:
public interface IEnumerator
{object Current { get; }bool MoveNext();void Reset(); //这个方法是非必须的,用于重置游标,可不实现
}
public interface IEnumerator<out T> : IDisposable, IEnumerator
{new T Current { get; }
}
-
MoveNext()
移动当前元素到下一个位置,Current
获取当前元素,如果没有元素了,则MoveNext()
返回false
。注意MoveNext()
会先调用,因此首次MoveNext()
是把位置移动到第一个位置。 -
Reset()
用于重置到起点,主要用于COM互操作,使用很少,可不用实现(直接抛出 NotSupportedException)。
📢 该接口不是必须的,只要实现了公共的
Current
、无参MoveNext()
成员就可进行枚举操作。
实现一个获取偶数的枚举器:
void Main()
{var evenor = new EvenNumbersEnumerator(1, 10);while (evenor.MoveNext()){Console.WriteLine(evenor.Current); //2 4 6 8 10}
}
//获取偶数的枚举器
public struct EvenNumbersEnumerator : IEnumerator<int> //不继承IEnumerator接口,效果也是一样的
{private int _start;private int _end;private int _position = int.MinValue;public EvenNumbersEnumerator(int start, int end){_start = start;_end = end;}public int Current => _position;object IEnumerator.Current => Current; //显示实现非泛型接口,然后隐藏起来public bool MoveNext(){if (_position == int.MinValue)_position = (int.IsEvenInteger(_start) ? _start : _start + 1) - 2;_position += 2;return (_position <= _end);}public void Reset() => throw new NotSupportedException();public void Dispose() { } //IEnumerator 是实现了 IDisposable接口的
}
2.2、IEnumerable可枚举集合
IEnumerable
、IEnumerable<T>
是所有集合的基础接口,其核心方法就是 GetEnumerator()
获取一个枚举器。
public interface IEnumerable
{IEnumerator GetEnumerator();
}
public interface IEnumerable<out T> : IEnumerable
{new IEnumerator<T> GetEnumerator();
}
📢 该接口也不是必须的,只要包含
public
的“GetEnumerator()”方法也是一样的。
有了 GetEnumerator()
,就可以使用foreach
来枚举元素了,这里foreach
会被编译为 while (evenor.MoveNext()){}
形式的代码。在上面 偶数枚举器的基础上实现 一个偶数类型。
void Main()
{var evenNumber = new EvenNumbers();foreach (var n in evenNumber){Console.WriteLine(n); //2 4 6 8 10}
}
public class EvenNumbers : IEnumerable<int> //不用必须继承接口,只要有GetEnumerator()即可
{public IEnumerator<int> GetEnumerator(){return new EvenNumbersEnumerator(1, 10);}IEnumerator IEnumerable.GetEnumerator() //显示实现非泛型接口,然后隐藏起来{return GetEnumerator();}
}
foreach 迭代其实就是调用其GetEnumerator()
、Current
、MoveNext()
实现的,因此接口并不是必须的,只要有对应的成员即可。
foreach (var n in evenNumber)
{Console.WriteLine(n); //2 4 6 8 10
}
/************** 上面代码编译后的效果如下:*****************/
IEnumerator<int> enumerator = evenNumber.GetEnumerator();
try
{while (enumerator.MoveNext ()){int i = enumerator.Current;Console.WriteLine (i);}
}
finally
{if (enumerator != null){enumerator.Dispose ();}
}
2.3、yield 迭代器
yield return
是一个用于实现迭代器的专用语句,它允许你一次返回一个元素,而不是一次性返回整个集合。常来用来实现自定义的简单迭代器,非常方便,无需实现IEnumerator
接口。
🔸惰性执行:元素是按需生成的,这可以提高性能并减少内存占用(当然这个要看具体情况),特别是在处理大型集合或复杂的计算时。迭代器方法在被调用时,不会立即执行,而是在MoveNext()
时,才会执行对应yield return
的语句,并返回该语句的结果。📢Linq里的很多操作也是惰性的。
🔸简化代码:使用yield return
可以避免手动编写迭代器的繁琐过程。
🔸状态保持:yield return
自动处理状态保持,使得在每次迭代中保存当前状态变得非常简单。每一条yield return
语句执行完后,代码的控制权会交还给调用者,由调用者控制继续。
yield
迭代器方法会被会被编译为一个实现了IEnumerator
接口的私有类,可以看做是一个高级的语法糖,有一些限制(要求):
-
迭代器的返回类型可以是
IEnumerable
、IEnumerator
或他们的泛型版本。还可以用 IAsyncEnumerable<T>
来实现异步的迭代器。 -
yield break
语句提前退出迭代器,不可直接用return
,是非法的。 -
yield
语句不能和try...catch
一起使用。
void Main()
{var us = new User();foreach (string name in us){Console.WriteLine(name); //sam kwong}foreach (string name in us.GetEnumerator1()){Console.WriteLine(name); //1 sam 2}foreach (string name in us.GetEnumerator2()){Console.WriteLine(name);//KWONG}
}
public class User
{private string firstName = "sam";private string lastName = "Kwong";public IEnumerator GetEnumerator(){yield return firstName;yield return lastName;}public IEnumerable GetEnumerator1() //返回IEnumerable{Console.WriteLine("1");yield return firstName; //第一次执行到这里Console.WriteLine("2");yield break; //第二次执行到这里,也是最后一次了yield return lastName;}public IEnumerable<string> GetEnumerator2() //返回IEnumerable<string>{yield return lastName.ToUpper();}
}
03、集合!装逼了!
3.1、⭐常用集合类型
ArrayList arr2 = new ArrayList();
arr2.Add(null);
arr2.Add("sam");
arr2.Add(1);
Console.WriteLine(arr2[1]);
3.2、⭐数组Array[]
Array 数组是一种有序的集合,通过唯一索引编号进行访问。数组T[]
是最常用的数据集合了,几乎支持创建任意类型的数组。Array
是所有的数组T[]
的(隐式)基类,包括一维、多维数组。CLR会将数组隐式转换为 Array 的子类,生成一个伪类型。
-
索引从0开始。
-
定长:数组在申明时必须指定长度,超出长度访问会抛出
IndexOutOfRangeException
异常。 -
内存连续:为了高效访问,数组元素在内存中总是连续存储的。如果是值类型数组,值和数组是存储在一起的;如果是引用类型数组,则数组值存储其引用对象的(堆内存)地址。因此数组的访问是非常高效的!
-
多维数组:矩阵数组 用逗号隔开,
int[,] arr = {{1,2},{3,4}};
-
多维数组:锯齿形数组(数组的数组),
int[][] arr =new int[3][];
int[] arr = new int[100]; //申请长度100的int数组
int[] arr2 = new int[]{1,2,3}; //申请并赋值,长度为3
int[] arr3 = {1,2,3}; //同上,前面已制定类型,后面可省略
arr[1] = 1;
Console.WriteLine(arr[2]); //未赋值,默认为0
📢 几乎大部分编程语言的数组索引都是从0开始的,如C、Java、Python、JavaScript等。当然也有从1开始的,如MATLAB、R、Lua。
📢 通过上表发现,Array 的很多方法都是静态方法,而不是实例方法,这一点有点困惑,造成了使用不便。而且大部分方法都可以用Linq的扩展来代替。
3.3、Linq扩展
LINQ to Objects (C#) 提供了大量的对集合操作的扩展,可以使用 LINQ 来查询任何可枚举的集合(IEnumerable)。扩展实现主要集中在 代码 Enumerable 类(源码 Enumerable.cs),涵盖了查询、排序、分组、统计等各种功能,非常强大。
-
简洁、易读,可以链式操作,简单的代码即可实现丰富的筛选、排序和分组功能。
-
延迟执行,只有在ToList、ToArray时才会正式执行,和
yeild
一样的效果。
var arr = Enumerable.Range(1, 100).ToArray(); //生成一个数组
var evens = arr.Where(n => int.IsEvenInteger(n)); //并没有执行
var arr2 = arr.GroupBy(n => n % 10).ToArray();
04、集合的一些小技巧
4.1、集合初始化器{}
同类的初始化器类似,用{}
来初始化设置集合值,支持数组、字典。
//数组
int[] arr1 = new int[3] { 1, 2, 3 };
int[] arr2 = new int[] { 1, 2, 3 };
int[] arr4 = { 1, 2, 3 };
//字典
Dictionary<int, string> dict1 = new() { { 1, "sam" }, { 2, "william" } };
Dictionary<int, string> dict2 = new() { [5] = "sam", [6] = "zhangsan" }; //索引器写法
var dict3 = new Dictionary<int, string> { { 1, "sam" }, { 2, "william" } };
4.2、集合表达式[]
集合表达式 简化了集合的申明和赋值,直接用[]
赋值,比初始化器更简洁,语法形式和JavaScript
差不多了。可用于数组、Sapn、List,还可以自定义集合生成器。
int[] iarr1 = new int[] { 1, 2, 3, 4 }; //完整的申明方式
int[] iarr2 = { 1, 2, 3, 4 }; //前面声明有类型int[],可省略new
int[] iarr3 = [1, 2, 3, 4]; //简化版的集合表达式List<string> list = ["a1", "b1", "c1"];
Span<char> sc = ['a', 'b', 'c'];
HashSet<string> set = ["a2", "b2", "c2"];//..展开运算符,把集合中的元素展开
List<string> list2 = [.. list,..set, "ccc"]; //a1 b1 c1 a2 b2 c2 ccc
4.3、范围运算符..
a..b
表示a到b的范围(不含b),其本质是 System.Range 类型数据,表示一个索引范围,常用与集合操作。
-
可省略
a
或b
,缺省则表示到边界。 -
可结合倒数
^
使用。
int[] arr = new[] { 0, 1, 2, 3, 4, 5 };
Console.WriteLine(arr[1..3]); //1 2 //索引1、2
Console.WriteLine(arr[3..]); //3 4 5 //索引3到结尾
Console.WriteLine(arr[..]); //全部
Console.WriteLine(arr[^2..]); //4 5 //倒数到2到结尾var r = 1..3;
Console.WriteLine(r.GetType()); //System.Range
自定义的索引器也可用用范围
Range
作为范围参数。
05、提高集合性能的一些实践
🚩尽量给集合一个合适的“容量”( capacity),几乎所有可变长集合的“动态变长”其实都是有代价的。他们内部会有一个定长的“数组”,当添加元素较多(大于容量)时,就会自动扩容(如倍增),然后把原有“数组”数据拷贝(搬运)到新“数组“中。
-
因此在使用可变长集合时,尽量给一个合适的大小,可减少频繁扩容带来的性能影响。当然也不可盲目设置一个比较大的容量,这就很浪费内存空间了。
stringBuilder
也是一样的道理。 -
可变长集合的插入、删除效率都不高,因为会移动其后续元素。
下面测试一下List<T>
,当创建一个长度为1000的List
时,设置容量(1000)和不设置容量(默认4)的对比。
int max = 10000;
public void List_AutoLength(){List<int> arr = new List<int>();for (int i = 0; i < max; i++){arr.Add(i);}
}
public void List_FixedLength()
{ List<int> arr = new List<int>(max);for (int i = 0; i < max; i++){arr.Add(i);}
}
很明显,自动长度的List
速度更慢,也消耗了更多的内存。
🚩尽量不创建新数组,使用一些数组方法时需要注意尽量不要创建新的数组,如下面示例代码:
var arr = Enumerable.Range(1, 100).ToArray();
// 需求:对arr进行反序操作
var arr2 = arr.Reverse().ToArray(); //用Linq,创建了新数组
Array.Reverse(arr); //使用Array的静态方法,原地反序,没有创建新对象
比较一下上面两种反序的性能:
文章转载自:安木夕
原文链接:https://www.cnblogs.com/anding/p/18229596
体验地址:引迈 - JNPF快速开发平台_低代码开发平台_零代码开发平台_流程设计器_表单引擎_工作流引擎_软件架构