摘要
本文使用FFA-Net的注意力改进YoloV9,FFA-Net提出了通道注意力和像素注意力相结合的方式,提高Block的表征能力,我把这两种注意力结合起来改进YoloV8的BackBone,取得了非常好的效果,即插即用,简单易懂,非常适合大家入手。
论文翻译:《FFA-Net:用于单图像去雾的特征融合注意力网络》
论文链接:https://arxiv.org/pdf/1911.07559v2
在这篇论文中,我们提出了一种端到端的特征融合注意力网络(FFA-Net)来直接恢复无雾图像。FFA-Net架构由三个关键组件组成:
-
一种新颖的特征注意力(FA)模块结合了通道注意力与像素注意力机制,考虑到不同通道特征包含完全不同的加权信息,且雾在图像的不同像素上分布不均匀。FA模块对不同的特征和像素进行非等权重处理,这在处理不同类型的信息时提供了额外的灵活性,扩展了卷积神经网络(CNNs)的表示能力。
-
一个基本块结构由局部残差学习和特征注意力组成,局部残差学习允许如薄雾区域或低频等不太重要的信息通过多个局部残差连接被绕过,从而让主要网络架构专注于更有效的信息。
-
一种基于注意力的不同层级特征融合(FFA)结构,特征权重从特征注意力(FA)模块中自适应地学习,给予重要特征更多的权重。这种结构还可以保留浅层层的信息并将其传递到深层层。</