FreeRTOS队列(queue)

队列(queue)可以用于"任务到任务"、 "任务到中断"、 "中断到任务"直接传输信息。

1、队列的特性

1、1常规操作

队列的简化操如下图所示,从此图可知:

  • 队列中可以包含若干数据:队列中有若干项,这被称为“长度”;
  • 每个数据大小固定;
  • 创建队列时就要指定长度、数据大小;
  • 数据的操作采用先进先出的方法:写数据时放入尾部,读数据时从头部读;
  • 也可以强制写队列头部:覆盖头部数据。

1、2 数据传输的两种方式

使用队列传输数据时有两种方法:

拷贝:把数据、变量的值复制进队列里;

引用:把数据、变量的地址复制进队列里。

FreeRTOS 使用拷贝值的方法,这更简单:
⚫ 局部变量的值可以发送到队列中,后续即使函数退出、局部变量被回收,也不会影响队列中的数据;
⚫ 无需分配 buffer 来保存数据,队列中有 buffer;
⚫ 局部变量可以马上再次使用;
⚫ 发送任务、接收任务解耦:接收任务不需要知道这数据是谁的、也不需要发送任务来释放数据;
⚫ 如果数据实在太大,你还是可以使用队列传输它的地址;
⚫ 队列的空间有 FreeRTOS 内核分配,无需任务操心;
⚫ 对于有内存保护功能的系统,如果队列使用引用方法,也就是使用地址,必须确保双方任务对这个地址都有访问权限。使用拷贝方法时,则无此限制:内核有足够的权限,把数据复制进队列、再把数据复制出队列。

1、3队列的阻塞访问

        只要知道队列的句柄,谁都可以读、写该队列。任务、 ISR 都可读、写队列。可以多个任务读写队列。
        任务读写队列时,简单地说:如果读写不成功,则阻塞;可以指定超时时间。口语化地说,就是可以定个闹钟:如果能读写了就马上进入就绪态,否则就阻塞直到超时。
        某个任务读队列时,如果队列没有数据,则该任务可以进入阻塞状态:还可以指定阻塞的时间。如果队列有数据了,则该阻塞的任务会变为就绪态。如果一直都没有数据,则时间到之后它也会进入就绪态。
        既然读取队列的任务个数没有限制,那么当多个任务读取空队列时,这些任务都会进入阻塞状态:有多个任务在等待同一个队列的数据。当队列中有数据时,哪个任务会进入就绪态?


⚫ 优先级最高的任务
⚫ 如果大家的优先级相同,那等待时间最久的任务会进入就绪态

        跟读队列类似,一个任务要写队列时,如果队列满了,该任务也可以进入阻塞状态:还可以指定阻塞的时间。如果队列有空间了,则该阻塞的任务会变为就绪态。如果一直都没有空间,则时间到之后它也会进入就绪态。既然写队列的任务个数没有限制,那么当多个任务写"满队列"时,这些任务都会进入阻塞状态:有多个任务在等待同一个队列的空间。当队列中有空间时,哪个任务会进入就绪态?


⚫ 优先级最高的任务
⚫ 如果大家的优先级相同,那等待时间最久的任务会进入就绪态

2、队列函数

使用队列的流程:创建队列、写队列、读队列、删除队列。

2.1创建

队列的创建有两种方法:动态分配内存、静态分配内存
 

1、动态分配内存: xQueueCreate,队列的内存在函数内部动态分配
 

QueueHandle_t xQueueCreate( UBaseType_t uxQueueLength, UBaseType_t uxItemSize );

2、静态分配内存: xQueueCreateStatic,队列的内存要事先分配好
函数原型如下:
 

QueueHandle_t xQueueCreateStatic(UBaseType_t uxQueueLength,UBaseType_t uxItemSize,uint8_t *pucQueueStorageBuffer,StaticQueue_t *pxQueueBuffer
)

示例代码:

// 示例代码
#define QUEUE_LENGTH 10
#define ITEM_SIZE sizeof( uint32_t )// xQueueBuffer 用来保存队列结构体
StaticQueue_t xQueueBuffer;// ucQueueStorage 用来保存队列的数据
// 大小为: 队列长度 * 数据大小
uint8_t ucQueueStorage[ QUEUE_LENGTH * ITEM_SIZE ];void vATask( void *pvParameters )
{QueueHandle_t xQueue1;// 创建队列: 可以容纳 QUEUE_LENGTH 个数据,每个数据大小是 ITEM_SIZExQueue1 = xQueueCreateStatic( QUEUE_LENGTH,ITEM_SIZE,ucQueueStorage,&xQueueBuffer );
}

2.2 复位

        队列刚被创建时,里面没有数据;使用过程中可以调用 xQueueReset()把队列恢复为初始状态,此函数原型为:

/* pxQueue : 复位哪个队列;
* 返回值: pdPASS(必定成功)
*/
BaseType_t xQueueReset( QueueHandle_t pxQueue);

2.3删除

        删除队列的函数为 vQueueDelete(),只能删除使用动态方法创建的队列,它会释放内存。 原型如下:

void vQueueDelete( QueueHandle_t xQueue );

2.4写队列

        可以把数据写到队列头部,也可以写到尾部,这些函数有两个版本:在任务中使用、在ISR 中使用。函数原型如下:
      

/* 等同于xQueueSendToBack
* 往队列尾部写入数据,如果没有空间,阻塞时间为xTicksToWait
*/
BaseType_t xQueueSend(
QueueHandle_t xQueue,
const void *pvItemToQueue,
TickType_t xTicksToWait
);/*
* 往队列尾部写入数据,如果没有空间,阻塞时间为xTicksToWait
*/
BaseType_t xQueueSendToBack(
QueueHandle_t xQueue,
const void *pvItemToQueue,
TickType_t xTicksToWait
);/*
* 往队列尾部写入数据,此函数可以在中断函数中使用,不可阻塞
*/
BaseType_t xQueueSendToBackFromISR(
QueueHandle_t xQueue,
const void *pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);/*
* 往队列头部写入数据,如果没有空间,阻塞时间为xTicksToWait
*/
BaseType_t xQueueSendToFront(
QueueHandle_t xQueue,
const void *pvItemToQueue,
TickType_t xTicksToWait
);/*
* 往队列头部写入数据,此函数可以在中断函数中使用,不可阻塞
*/
BaseType_t xQueueSendToFrontFromISR(
QueueHandle_t xQueue,
const void *pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);

  

2.5读队列

        使用 xQueueReceive()函数读队列,读到一个数据后,队列中该数据会被移除。这个
函数有两个版本:在任务中使用、在 ISR 中使用。函数原型如下:

BaseType_t xQueueReceive( QueueHandle_t xQueue,
void * const pvBuffer,
TickType_t xTicksToWait );BaseType_t xQueueReceiveFromISR(
QueueHandle_t xQueue,
void *pvBuffer,
BaseType_t *pxTaskWoken
);

2.6查询

可以查询队列中有多少个数据、有多少空余空间。函数原型如下:
 

/*
* 返回队列中可用数据的个数
*/
UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue );
/*
* 返回队列中可用空间的个数
*/
UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue );

2.7覆盖 or偷看

当队列长度为 1 时,可以使用 xQueueOverwrite()或 xQueueOverwriteFromISR()
来覆盖数据。
注意,队列长度必须为 1。当队列满时,这些函数会覆盖里面的数据,这也以为着这
些函数不会被阻塞
 

/* 覆盖队列
* xQueue: 写哪个队列
* pvItemToQueue: 数据地址
* 返回值: pdTRUE表示成功, pdFALSE表示失败
*/
BaseType_t xQueueOverwrite(
QueueHandle_t xQueue,
const void * pvItemToQueue
);
BaseType_t xQueueOverwriteFromISR(
QueueHandle_t xQueue,
const void * pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken
);

如果想让队列中的数据供多方读取,也就是说读取时不要移除数据,要留给后来人。那
么可以使用"窥视",也就是xQueuePeek()或xQueuePeekFromISR()。这些函数会从队列中
复制出数据,但是不移除数据。这也意味着,如果队列中没有数据,那么"偷看"时会导致阻
塞;一旦队列中有数据,以后每次"偷看"都会成功。
 

/* 偷看队列
* xQueue: 偷看哪个队列
* pvItemToQueue: 数据地址, 用来保存复制出来的数据
* xTicksToWait: 没有数据的话阻塞一会
* 返回值: pdTRUE表示成功, pdFALSE表示失败
*/
BaseType_t xQueuePeek(
QueueHandle_t xQueue,
void * const pvBuffer,
TickType_t xTicksToWait
);
BaseType_t xQueuePeekFromISR(
QueueHandle_t xQueue,
void *pvBuffer,
);

3、传输大数据

FreeRTOS的队列使用拷贝传输,也就是要传输uint32_t时,把4字节的数据拷贝进队列;
要传输一个8字节的结构体时,把8字节的数据拷贝进队列。
如果要传输1000字节的结构体呢?写队列时拷贝1000字节,读队列时再拷贝1000字节?
不建议这么做,影响效率!
这时候,我们要传输的是这个巨大结构体的地址:把它的地址写入队列,对方从队列得
到这个地址,使用地址去访问那1000字节的数据。
使用地址来间接传输数据时,这些数据放在RAM里,对于这块RAM,要保证这几点:
⚫ RAM 的所有者、操作者,必须清晰明了
这块内存,就被称为"共享内存"。要确保不能同时修改 RAM。比如,在写队列之
前只有由发送者修改这块 RAM,在读队列之后只能由接收者访问这块 RAM。
⚫ RAM 要保持可用
这块 RAM 应该是全局变量,或者是动态分配的内存。对于动然分配的内存,要
确保它不能提前释放:要等到接收者用完后再释放。 另外,不能是局部变量。
 

实例

程序会创建一个队列,然后创建1个发送任务、 1个接收任务:
⚫ 创建的队列:长度为 1,用来传输"char *"指针
⚫ 发送任务优先级为 1,在字符数组中写好数据后,把它的地址写入队列
⚫ 接收任务优先级为 2,读队列得到"char *"值,把它打印出来


        这个程序故意设置接收任务的优先级更高,在它访问数组的过程中,接收任务无法执行、无法写这个数组。

main函数中创建了队列、创建了发送任务、接收任务,代码如下:
 

/* 定义一个字符数组 */
static char pcBuffer[100];
/* vSenderTask被用来创建2个任务,用于写队列
* vReceiverTask被用来创建1个任务,用于读队列
*/
static void vSenderTask( void *pvParameters );
static void vReceiverTask( void *pvParameters );
/*-----------------------------------------------------------*/
/* 队列句柄, 创建队列时会设置这个变量 */
QueueHandle_t xQueue;
int main( void )
{
prvSetupHardware();
/* 创建队列: 长度为1,数据大小为4字节(存放一个char指针) */
xQueue = xQueueCreate( 1, sizeof(char *) );
if( xQueue != NULL )
{
/* 创建1个任务用于写队列
* 任务函数会连续执行,构造buffer数据,把buffer地址写入队列
* 优先级为1
*/
xTaskCreate( vSenderTask, "Sender", 1000, NULL, 1, NULL );
/* 创建1个任务用于读队列
* 优先级为2, 高于上面的两个任务
* 这意味着读队列得到buffer地址后,本任务使用buffer时不会被打断
*/
xTaskCreate( vReceiverTask, "Receiver", 1000, NULL, 2, NULL );
/* 启动调度器 */
vTaskStartScheduler();
}
else
{
/* 无法创建队列 */
}
/* 如果程序运行到了这里就表示出错了, 一般是内存不足 */
return 0;
}

发送任务的函数中,现在全局大数组pcBuffer中构造数据,然后把它的地址写入队列,
代码如下
 

static void vSenderTask( void *pvParameters )
{BaseType_t xStatus;static int cnt = 0;char *buffer;/* 无限循环 */for( ;; ){sprintf(pcBuffer, "www.100ask.net Msg %d\r\n", cnt++);buffer = pcBuffer; // buffer变量等于数组的地址, 下面要把这个地址写入队列/* 写队列* xQueue: 写哪个队列* pvParameters: 写什么数据? 传入数据的地址, 会从这个地址把数据复制进队列* 0: 如果队列满的话, 即刻返回*/xStatus = xQueueSendToBack( xQueue, &buffer, 0 ); /* 只需要写入4字节, 无需写入整个buffer */if( xStatus != pdPASS ){printf( "Could not send to the queue.\r\n" );}}
}

接收任务的函数中,读取队列、得到buffer的地址、打印,代码如下
 

static void vReceiverTask( void *pvParameters )
{/* 读取队列时, 用这个变量来存放数据 */char *buffer;const TickType_t xTicksToWait = pdMS_TO_TICKS( 100UL );BaseType_t xStatus;/* 无限循环 */for( ;; ){/* 读队列* xQueue: 读哪个队列* &xReceivedStructure: 读到的数据复制到这个地址* xTicksToWait: 没有数据就阻塞一会*/xStatus = xQueueReceive( xQueue, &buffer, xTicksToWait); /* 得到buffer地址,只是4字节 */if( xStatus == pdPASS ){/* 读到了数据 */printf("Get: %s", buffer);}else{/* 没读到数据 */printf( "Could not receive from the queue.\r\n" );}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/28217.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】实现学生管理系统(完整版)

💕💕💕大家好,这是作业侠系列之C实现学生管理系统,还是那句话,大家不想cv或者cv了跑不起来,三连后都可以来找我要源码,私信或评论留下你的邮箱即可。有任何问题有可以私聊我,大家觉得…

YOLOv10涨点改进SPPF创新结构,重新设计全局平均池化层和全局最大池化层,增强全局视角信息和不同尺度大小的特征

本文改进:SPPF_improve利用全局平均池化层和全局最大池化层,加入一些全局背景信息和边缘信息,从而获取全局视角信息并减轻不同尺度大小所带来的影响,强烈推荐,适合直接使用,paper创新级。 目录 1,YOLOv10介绍 1.1 C2fUIB介绍 1.2 PSA介绍 1.3 SCDown 2.SPP &SP…

TSP:人工原生动物优化器(APO)求解旅行商问题TSP(可以更改数据),MATLAB代码

一、旅行商问题介绍 二、人工原生动物优化算法求解TSP 2.1算法介绍 人工原生动物优化器(Artificial Protozoa Optimizer ,APO)由Xiaopeng Wang等人于2024年提出,其灵感来自自然界中的原生动物。APO 模拟了原生动物的觅食、休眠和…

Python合并文件(dat、mdf、mf4)

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…

【three.js】设置canvas画布背景透明

通过Three.js渲染一个模型的时候,不希望canvas画布有背景颜色,也就是canvas画布完全透明,可以透过canvas画布看到画布后面叠加的HTML元素图文,呈现出来一种三维模型悬浮在网页上面的效果。 比如我们现在的模型背景是黑色的&#…

spring框架(SSM)

Spring Framework系统架构 Spring框架是一个开源的企业级Java应用程序框架,它为开发Java应用程序提供了一个全方位的解决方案。Spring的核心优势在于它的分层架构,这使得开发者可以灵活选择使用哪些模块而无需引入不需要的依赖。下面是Spring框架的一些关…

【每天学会一个渗透测试工具】AWVS安装及使用指南

🌝博客主页:泥菩萨 💖专栏:Linux探索之旅 | 网络安全的神秘世界 | 专接本 | 每天学会一个渗透测试工具 ✨AWVS介绍 是应用漏洞扫描工具 💦使用docker安装 docker pull dockermi3aka/awvs启动镜像 docker run -dit …

数据采集项目1-用户行为数据同步

环境准备 linux配置、克隆103和104、编写集群分发脚本、ssh无密码登录配置、jdk安装、数据模拟集群日志数据输出脚本、xcall脚本、安装hadoop、zk安装、kafka安装、flume安装、mysql安装、maxwell安装、datax安装、hive安装 用户行为数据同步-总的数据流程图 第一层flume 数据…

JavaScript算法实现dfs查找省市区路径

需求 存在如下数组,实现一个算法通过输入区名,返回省->市->区格式的路径,例如输入西湖区,返回浙江省->杭州市->西湖区。 // 定义省市区的嵌套数组 const data [{name: "浙江省",children: [{name: "…

【百度智能体】零代码创建职场高情商话术助手智能体

一、前言 作为一个程序猿,工科男思维,走上职场后,总会觉得自己不会处理人际关系,容易背锅说错话,这时候如果有个助手能够时时刻刻提醒自己该如何说话如何做事情就好了。 而我们现在可以通过百度文心智能体平台构建各…

Java基础——网络编程(一)

初识网络编程 网络编程:在网络通信协议下,不同计算机上运行的程序,进行的数据传输 应用场景:即时通信、网游对战、金融证券、国际贸易、邮件…… BS架构的优缺点: 1、不需要开发客户端,只需要页面服务端 2、…

计算机网络知识点全面总结回顾

物理层 OSI模型:数据链路层(流量控制),从传输层开始端到端;每一层的元素都称为实体,同一层的是对等实体;三个重要概念:服务(下层为上层提供调用)&#xff0c…

Python程序设计 2021秋计算和人工智能期中商科2

2021秋计算和人工智能期中商科2 第1关:矩形面积的计算 编写一个程序根据对角线长度和夹角度数计算矩形面积。 矩形面积如下所示 输入对角线长度和夹角度数,计算并显示矩形面积 要求结果显示两位小数 deval(input("对角线长度")) aeval(input(…

1.Element的table表高度自适应vue3+js写法

解决方法 在页面table上添加id,动态计算每页table的最大高度 ,将高度保存在store中,每次切换路由时进行计算。 文章目录 解决方法前言一、页面table使用二、store状态库1.引入库 效果 前言 提示:状态管理使用的是pinia,用法参考…

腾讯云EdgeOne对比普通CDN的分别

EdgeOne架构图 普通CDN架构图 ​​​​​​​ 腾讯云EdgeOne对比普通CDN的不同点 服务范围和集成度 腾讯云EdgeOne是一体化的综合平台,不仅提供内容分发功能,还包括安全防护、性能优化和边缘计算等服务。EdgeOne提供了DDoS防护、WAF(Web应…

流媒体传输协议HTTP-FLV、WebSocket-FLV、HTTP-TS 和 WebSocket-TS的详细介绍、应用场景及对比

一、前言 HTTP-FLV、WS-FLV、HTTP-TS 和 WS-TS 是针对 FLV 和 TS 格式视频流的不同传输方式。它们通过不同的协议实现视频流的传输,以满足不同的应用场景和需求。接下来我们对这些流媒体传输协议进行剖析。 二、传输协议 1、HTTP-FLV 介绍:基于 HTTP…

基于springboot的大学计算机基础网络教学系统

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于springboot的大学计算机基础网络教学…

sqlite3模块的使用

1. SQLite数据库 SQLite是一个轻量级的, 基于磁盘的, 关系型的数据库管理系统(RDBMS). 它不需要一个独立的服务器进程或操作系统级别的配置. SQLite是D.Richard Hipp在2000年创建的, 并且由于其小巧, 快速, 可靠和易于使用的特性, 它在全球范围内得到了广泛的应用.以下是 SQLi…

60.WEB渗透测试-信息收集- 端口、目录扫描、源码泄露(8)

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:59.WEB渗透测试-信息收集- 端口、目录扫描、源码泄露(7) 御剑是用…

人工智能模型组合学习的理论和实验实践

组合学习,即掌握将基本概念结合起来构建更复杂概念的能力,对人类认知至关重要,特别是在人类语言理解和视觉感知方面。这一概念与在未观察到的情况下推广的能力紧密相关。尽管它在智能中扮演着核心角色,但缺乏系统化的理论及实验研…