C语言--基础面试真题

1、局部变量和静态变量的区别

  • 普通局部变量和静态局部变量区别

    • 存储位置:

      • 普通局部变量存储在栈上

      • 静态局部变量存储在静态存储区

    • 生命周期:

      • 当函数执行完毕时,普通局部变量会被销毁

      • 静态局部变量的生命周期则是整个程序运行期间,即使函数调用结束,静态局部变量的值也会被保留

    • 初始值:

      • 普通局部变量在每次函数调用时都会被初始化,它们的初始值是不确定的,除非显式地进行初始化

      • 静态局部变量在第一次函数调用时会被初始化,然后保持其值不变,直到程序结束

  • #include <stdio.h>
    ​
    void normal_func() {int i = 0;i++;printf("局部变量 i = %d\n", i);
    }
    ​
    void static_func() {static int j = 0;j++;printf("static局部变量 j = %d\n", j);
    }
    ​
    int main() {// 调用3次normal_func()normal_func();normal_func();normal_func();
    ​// 调用3次static_func()static_func();static_func();static_func();
    ​return 0;
    }
  • 运行结果:

  • 局部变量 i = 1
    局部变量 i = 1
    局部变量 i = 1
    static局部变量 j = 1
    static局部变量 j = 2
    static局部变量 j = 3

2、预处理

  • C语言对源程序处理的四个步骤:预处理、编译、汇编、链接。

    • 预处理

      • 宏定义展开、头文件展开、条件编译,这里并不会检查语法

    • 编译

      • 检查语法,将预处理后文件编译生成汇编文件

    • 汇编

      • 将汇编文件生成目标文件(二进制文件)

    • 链接

      • 将目标文件链接为可执行程序

    gcc -E hello.c -o hello.i //处理文件包含,宏和注释 
    gcc -S hello.i -o hello.s //编译为汇编文件 
    gcc -c hello.s -o hello.o //经汇编后为二进制的机器指令
    gcc hello.o -o hello      //链接所用的到库
    ​
    1 预处理:预处理相当于根据预处理命令组装成新的 C 程序,不过常以 i 为扩展 名。 
    2 编 译:将得到的 i 文件翻译成汇编代码 .s 文件。 
    3 汇 编:将汇编文件翻译成机器指令,并打包成可重定位目标程序的 O 文件。 该文件是二进制文件,字节编码是机器指令。 
    4 链 接:将引用的其他 O 文件并入到我们程序所在的 o 文件中,处理得到最终 的可执行文件

  • C编译器提供的预处理功能主要包括:

    • 文件包含 #include

    • 宏定义 #define

    • 条件编译 #if #endif ……

3、文件包含处理

  • 文件包含处理

    • 指一个源文件可以将另外一个文件的全部内容包含进来

    • C语言提供了#include命令用来实现文件包含的操作

  • #include< > 与 #include ""的区别

    • <> 表示系统直接按系统指定的目录检索

    • "" 表示系统先在 "" 指定的路径(没写路径代表当前路径)查找头文件,如果找不到,再按系统指定的目录检索

4、宏定义

  • 在预编译时将宏名替换成字符串的过程称为"宏展开"(也叫宏替换)。

    • 宏名一般用大写,以便于与变量区别

    • 宏定义不作语法检查,只有在编译被宏展开后的源程序才会报错

    • 宏定不要不要行末加分号

#define PI 3.14
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define FUNC(a)  func(a)
​
void func(int a) {int b = a;
}
​
int main() {double a = PI;int temp = MAX(1, 2+3);FUNC(10);
​return 0;
}

5、条件编译

一般情况下,源程序中所有的行都参加编译。但有时希望对部分源程序行只在满足一定条件时才编译,即对这部分源程序行指定编译条件。

防止头文件被重复包含
#ifndef _SOMEFILE_H
#define _SOMEFILE_H
​
//需要声明的变量、函数
//宏定义
//结构体
​
#endif
软件裁剪

同样的C源代码,条件选项不同可以编译出不同的可执行程序:

#include <stdio.h>
​
// #define A 有注释,没有注释,观察运行结果
#define A
​
int main() {
#ifdef Aprintf("这是大写操作\n");
#elseprintf("这是小写操作\n");
#endif
​return 0;
}

6、递归

  • 函数递归调用:

    • 函数可以调用函数本身(不要用main()调用main(),不是不能这么做,而是不建议,往往得不到你想要的结果)。

  • 递归的优点

    • 递归给某些编程问题提供了最简单的方法。

  • 递归的缺点

    • 一个有缺陷的递归会很快耗尽计算机的资源,递归的程序难以理解和维护

 

7、普通函数调用

#include <stdio.h>
​
void fun_b(int b) {printf("b = %d\n", b);
​return;
}
​
void func_a(int a) {fun_b(a - 1);
​printf("a = %d\n", a);
}
​
int main(void) {func_a(2);printf("main\n");
​return 0;
}

运行顺序:

  • 结论:

    • 先调用,后返回(栈结构)

    • 调用谁,返回谁的位置

运行结果:

b = 1
a = 2
main

8、函数递归调用

 

#include <stdio.h>
​
//0的阶乘是1  1的阶乘1    return 1
//n! =(n-1)!*n
//(n-1)! = (n-2)!*(n-1)
//n = 1
​
​
// 递归函数计算阶乘
int factorial(int n) {if (n == 0 || n == 1) {return 1;} else {return n * factorial(n - 1);}
}
​
int main() {int n;printf("请输入一个整数:");scanf("%d", &n);
​// 调用递归函数计算阶乘并输出结果int result = factorial(n);printf("%d 的阶乘是 %d\n", n, result);
​return 0;
}
​

运行顺序:

9、大小端验证

        所谓的大端模式,是指数据的低位(就是权值较小的后面那几位)保存在内存的高地址中,而数据的高位,保存在内存的低地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放;所谓的小端模式,是指数据的低位保存在内存的低地址中,而数 据的高位保存在内存的高地址中,这种存储模式将地址的高低和数据位权有效地结合起来,高地址部分权值高,低地址部分权值低,和我们的逻辑方法一致。
​
1)大端模式:
​
低地址 -----------------> 高地址
​
0x12  |  0x34  |  0x56  |  0x78
​
2)小端模式:
​
低地址 ------------------> 高地址
​
0x78  |  0x56  |  0x34  |  0x12

#include <stdio.h>
#include <stdint.h>
​
int check_endianness() {uint32_t temp = 0x44332211; // 4个字节,32位uint8_t * p = NULL;  // 8位
​p = (uint8_t *)&temp;  // 只取uint8_t的长度printf("%#x\n", *p);printf("%#x\n", p[0]); // *p 和 p[0]等价
​uint16_t * p1 = (uint16_t *)&temp; printf("*p1 = %#x\n", *p1);
​if (*p == 0x11 ) {return 0; // 0是小端} else {return 1; // 大端}
}
​
int main() {int res = check_endianness();if (res == 0) {printf("小端\n");} else {printf("大端\n");}
​return 0;
}

10、大小端转换

#include <stdio.h>
​
int changeBigEndian(int data) {
​return (data >> 24 & 0x000000ff) |(data >> 8 & 0x0000ff00) |(data << 8 & 0x00ff0000) |(data << 24 & 0xff000000);
}
​
int main() {
​
​int mem = 0x44332211;
​printf("%0x\n", changeBigEndian(mem));return 0;
}
​

11、二分查找

#include <stdio.h>
​
// 二分查找函数
int binarySearch(int arr[], int size, int target) {int left = 0;int right = size - 1;while (left <= right) {int mid = left + (right - left) / 2;if (arr[mid] == target) {return mid; // 找到目标元素,返回索引} else if (arr[mid] < target) {left = mid + 1; // 在右半部分继续查找} else {right = mid - 1; // 在左半部分继续查找}}return -1; // 目标元素不存在,返回-1
}
​
int main() {int arr[] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19};int size = sizeof(arr) / sizeof(arr[0]);int target = 11;int index = binarySearch(arr, size, target);if (index != -1) {printf("目标元素 %d 在数组中的索引为 %d\n", target, index);} else {printf("目标元素 %d 不在数组中\n", target);}return 0;
}
​

12、什么是指针,在什么地方使用的

 指针(Pointer)是一种特殊的变量类型,它用于存储内存地址。指针的实质就是内存“地址”。
使用范围:
动态内存分配:指针常用于动态分配内存,例如使用 malloc()、calloc() 或 new 分配内存,并使用指针来管理和访问分配的内存块。
​
数组和字符串:数组名本身就是指向数组第一个元素的指针,在函数参数传递、数组访问等场景中经常用到指针。
​
函数指针:函数指针是指向函数的指针变量,可以用来在运行时动态确定调用的函数,或者将函数作为参数传递给其他函数。
……

13、函数指针是什么

函数指针是指向函数的指针变量,它存储了函数的地址,可以用来调用该函数。在 C 语言中,函数名可以视为函数在内存中的地址,因此可以将函数名赋值给函数指针变量,从而实现通过函数指针来调用函数。

#include <stdio.h>
​
int getData(int a, int b) {return a + b;
}
​
int main() {
​int(*func)(int, int);
​func = getData;printf("%d\n", func(5, 8));
​return 0;
}
​

复议:指针函数

  • 指针函数是一个返回指针的函数。它的返回值是一个指针,指向某种数据类型的内存地址。

  • 指针函数通常用于动态内存分配、返回数组、返回字符串等场景。

int* create_array(int size) {int* arr = malloc(size * sizeof(int)); // 动态分配内存return arr;
}

14、声明和定义的区别

  • 声明告诉编译器,某个名称(如变量、函数、类等)存在,但不分配内存空间或提供实现细节。

  • 声明通常包括名称和类型信息,以及可能的参数列表。

  • 声明可以出现在函数或变量的定义之前,以便在使用之前提供有关名称的信息。

int add(int a, int b);
  • 定义不仅声明了名称的存在,还为其分配了内存空间或提供了实现细节。

  • 对于变量,定义会分配内存空间;对于函数,定义会提供函数体的实现。

  • 每个定义都是一个声明,但不是每个声明都是一个定义。

// 函数定义
int add(int a, int b) {return a + b;
}

15、extern关键字是干什么用

用来修饰全局变量,全局变量本身是全局可用的,但是由于文件是单个完成编译,并且编译是自上而下的,所以说,对于不是在本范围内定义的全局变量,要想使用必须用 extern 进行声明,如果不加上 extern ,就会造成重定义。

注意,经 extern 声明的变量,不可以再初始化。

16、位运算

#include <stdio.h>
#include <inttypes.h>
​
int main() {// 将变量a的第2位设置为1,其他位保持不变uint8_t a = 0b10110011; // 0xb3;a |= (1 << 2);          // 或者 x = x | (1 << 2);printf("%02x\n", a);    // b7,  10110111
​// 将变量b的第2位、第6位设置为1,其他位保持不变uint8_t b = 0b10110011; // 0xb3;b |= (1 << 2 | 1 << 6);printf("%02x\n", b);    // f7,11110111
​// 将变量c的第5位设置为0,其他位保持不变uint8_t c = 0b10110011;  // 0xb3;c &= ~(1 << 5);printf("%02x\n", c);    // 93,10010011
​// 将变量d的第0~3位设置为0,其他位保持不变uint8_t d = 0b11111111;  // 0xff;d &= ~(1 << 0 | 1 << 1 | 1 << 2 | 1 << 3);printf("%02x\n", d);    // f0,11110000
​// 将变量e的第2位取反,其他位保持不变uint8_t e = 0b10110011;  // 0xb3;e ^= (1 << 2);printf("%02x\n", e);    // b7,  10110111
​return 0;
}

17、说说什么是野指针,怎么产生的,如何避免

野指针是指向"垃圾"内存的指针,也就是说,它的值是不确定的。野指针通常由以下几种情况产生:
​
未初始化的指针:如果你声明了一个指针变量但没有给它赋值,那么它就是一个野指针。例如:int *ptr;。
已删除的指针:如果你使用delete或free删除了一个指针,但没有将它设置为NULL,那么它就成了一个野指针。例如:
超出作用域的指针:如果你返回了一个函数内部的局部变量的地址,那么这个地址在函数返回后就不再有效,因此返回的指针就是一个野指针。
​
​
初始化: ptr = NULL;
​

18、堆和栈有什么区别?

- 栈区(stack)
​
- - 栈是一种先进后出的内存结构,由编译器自动分配释放,存放函数的参数值、返回值、局部变量等。在程序运行过程中实时加载和释放,因此,局部变量的生存周期为申请到释放该段栈空间。
​
- 堆区(heap)
​
- - 堆是一个大容器,它的容量要远远大于栈,但没有栈那样先进后出的顺序。用于动态内存分配。堆在内存中位于BSS区和栈区之间。一般由程序员分配和释放,若程序员不释放,程序结束时由操作系统回收。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/2008.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于51单片机的电子秤LCD1602液晶显示( proteus仿真+程序+设计报告+讲解视频)

基于51单片机电子秤LCD显示 1. 主要功能&#xff1a;2. 讲解视频&#xff1a;3. 仿真设计4. 程序代码5. 设计报告6. 设计资料内容清单&&下载链接 基于51单片机电子秤LCD显示( proteus仿真程序设计报告讲解视频&#xff09; 仿真图proteus8.9及以上 程序编译器&#xf…

深兰科技入选2024全国“人工智能+”行动创新案例TOP100

近日&#xff0c;中科院《互联网周刊》联合eNET研究院、德本咨询、中国社会科学院信息化研究中心共同发布了《2024全国“人工智能”行动创新案例TOP100》榜单。经评委会层层遴选&#xff0c;深兰科技专为洛阳市打造的“工业智能化洛阳中心”项目成功入围该榜单。一同入围的还包…

高通发布电脑CPU,比英特尔Ultra9领先51%

要说2024年最热门的关键词&#xff0c;那肯定非 AI 莫属&#xff0c;当前 AI 已经开始深入各行各业&#xff0c;AI 电视、AI 手机、AI 车机、AI 家电&#xff0c;以及 AI PC ,这些都意味着 AI 将对各个行业带来的新风向和不小的冲击。 2024 年了&#xff0c;PC 处理器还能卷出什…

安居水站:自来水安全性影响因素分析及监测管理对策

摘要&#xff1a;自来水作为人们日常生活的重要组成部分&#xff0c;其安全性直接关系到公众健康。本文深入探讨了可能影响自来水安全性的多种因素&#xff0c;包括水源污染、水处理工艺、供水管网问题、二次供水设施维护不当、工业及农业污染、重金属和微生物污染、季节变化以…

论文笔记:Large Language Models Are Zero-Shot Time Series Forecasters

2023 neurips 完全是零样本&#xff08;zero-shot&#xff09;的&#xff0c;不需要微调 1 方法 1.1 Tokenization&#xff08;分词和编码&#xff09; 现有的LLM&#xff08;比如GPT3&#xff09;的tokenizer不能直接用来编码时间序列的句子 比如对数字42235630&#xff0…

负载均衡的原理及算法

一、定义 负载均衡&#xff08;Load Balancing&#xff09;是一种计算机网络和服务器管理技术&#xff0c;旨在分配网络流量、请求或工作负载到多个服务器或资源&#xff0c;以确保这些服务器能够高效、均匀地处理负载&#xff0c;并且能够提供更高的性能、可用性和可扩展性。…

数据科学与大数据(3)

数据分析&#xff0c;它不应该是在一个不适合的工具下生搬硬套 工具为具体的场景服务&#xff0c;换一个场景大概率会很鸡肋&#xff0c;对于一个成熟的分析师来说&#xff0c;十八般武艺样样精通到后期为常态&#xff0c;不要产生工具上的路径依赖&#xff0c;不要想着学一个工…

IDEA更换新版本启动没反应

目前安装了新的IDEA(压缩包方式)&#xff0c;由于老版本的IDEA还在用&#xff0c;所以并没有删除&#xff0c;但是安装完后发现点击idea64.exe后没有反应&#xff0c;于是网上找了好多方法最后解决了 下面是我的解决过程 新版本&#xff1a;IntelliJIdea2024.1 老版本: Intelli…

ubuntu系统安装配置gitlab+Jenkins+发布持续集成持续部署保姆级教程。

1、服务器环境 名称 系统 IP 备注 gitlab ubuntu20.04.2图形化 192.168.26.130 要求有6G的内存 Jenkins Ubuntu20.04.2图形化 …

Pytorch下张量的形状操作(详细)

目录 一、基本操作函数 二、分类&#xff1a;维度改变&#xff0c;张量变形&#xff0c;维度重排 2.1维度改变 2.2张量变形 2.3维度重排 三、实例 一、基本操作函数 在PyTorch中&#xff0c;对张量的形状进行操作是常见的需求&#xff0c;因为它允许我们重新组织、选择和…

大模型训练及推理【硬件选型指南】及 GPU 通识

我们在做大模型应用部署时&#xff08;如训练、微调、RAG&#xff09;&#xff0c;往往需要在前期就分析好硬件选型指标&#xff0c;或者我们给客户报方案之前&#xff0c;可能你已经有了一个方案&#xff0c;但是由于实践经验缺乏&#xff0c;不知道在硬件上该如何评估并上报。…

CTF练习-BUUCTF(1~25)

文章目录 Crypto题目1 一眼就解密题目解题思路flag 题目2 md5题目解题思路flag 题目3 Url编码题目解题思路flag 题目4 看我回旋踢题目解题思路1解题思路2flag 题目5 摩丝题目解题思路flag 题目6 passwd题目解题思路flag 题目7 变异凯撒题目解题思路flag 题目8 Quoted-printable…

AJAX——封装_简易axios

1.简易axios_获取身份列表 需求&#xff1a;基于Promise XHR 封装 myAxios函数&#xff0c;获取省份列表展示 步骤&#xff1a; 1.定义 myAxios函数&#xff0c;接收配置对象&#xff0c;返回Promise对象 2.发起XHR请求&#xff0c;默认请求方法为GET 3.调用成功/失败的处…

Python与数据库连接

新建表boss create table 创建表 Code import pymysqlcon pymysql.connect(hostlocalhost,\userroot,\password,\port3306,\dbbusiness) cursorcon.cursor() cursor.execute(create table if not exists boss(id int auto_increment primary key,name varchar(20)not null…

WPF2 样式布局

样式布局 WPF中的各类控件元素, 都可以自由的设置其样式。 诸如: 字体(FontFamily) 字体大小(FontSize) 背景颜色(Background) 字体颜色(Foreground) 边距(Margin) 水平位置(HorizontalAlignment) 垂直位置(VerticalAlignment) 等等。 而样式则是组织和重用以上的重要工具。…

Docker基础+虚拟化概念

目录 一、虚拟化简介 1、虚拟化概述 2、cpu的时间分片&#xff08;cpu虚拟化&#xff09; 3、cpu虚拟化性性能瓶颈 4、虚拟化工作 4.1虚拟机工作原理 4.2两大核心组件:QEMU、KVM 4.2.1QEMU&#xff1a; 4.2.2KVM&#xff1a; 5、虚拟化类型 ①全虚拟化&#xff1a; …

国内开通chatgpt plus会员方法

ChatGPT镜像 今天在知乎看到一个问题&#xff1a;“平民不参与内测的话没有账号还有机会使用ChatGPT吗&#xff1f;” 从去年GPT大火到现在&#xff0c;关于GPT的消息铺天盖地&#xff0c;真要有心想要去用&#xff0c;途径很多&#xff0c;别的不说&#xff0c;国内GPT的镜像…

微软如何打造数字零售力航母系列科普02 --- 微软低代码应用平台加速企业创新 - 解放企业数字零售力

微软低代码应用平台推动企业创新- 解放企业数字零售力 微软在2023年GARTNER发布的魔力象限图中处于头部领先&#xff08;leader&#xff09;地位。 其LCAP产品是Microsoft Power Apps&#xff0c;扩展了AI Builder、Dataverse、Power Automate和Power Pages&#xff0c;这些都包…

Vue3 Vite配置环境变量

Vue3 Vite配置环境变量 相关文档配置.env文件vite.config.jspackage.json 使用 相关文档 Vite 官方中文文档&#xff1a;https://cn.vitejs.dev/环境变量和模式&#xff1a;https://cn.vitejs.dev/guide/env-and-mode.html#env-file在配置中使用环境变量&#xff1a;https://c…

SCADA系统通过巨控GRM模块实现OPC协议远程监控PLC

SCADA系统和PLC不在同一个地方&#xff0c;需要远程监控和控制PLC&#xff0c;可以通过巨控GRM模块来实现&#xff0c;通过OPC协议转巨控服务器远程读写PLC寄存器&#xff0c;从而完成远程监控PLC。 要实现SCAKDA系统远程监控PLC&#xff0c;关键是要实现SKADA能通过互联网访问…