[C#]winform部署官方yolov10目标检测的onnx模型

【框架地址】

https://github.com/THU-MIG/yolov10
【算法介绍】

今天为大家介绍的是 YOLOv10,这是由清华大学研究团队最新提出的,同样遵循 YOLO 系列设计原则,致力于打造实时端到端的高性能目标检测器。

方法

创新

  1. 双标签分配策略

众所周知,标签分配策略对于目标检测器来说是至关重要的。经过这几年的发展,前前后后也提出了许多的不同的方案,但归根结底还是围绕着正负样本去定义。通常,我们会认为与 GT 框的 IoU 大于给定阈值的便是正样本

首先,回顾下经典的 YOLO 架构,其通过网格化的方式预定义数千个锚框(anchor),然后基于这些锚框进一步执行回归和分类任务。然而,实际场景中,我们所面临的目标其大小、长宽比、数量、位姿均各有所异,因此很难通过这种方式来提供一个完美的先验信息,尽管可以借助一些方法如 kmeans 聚类来获得一个次优的结果。

于是乎,基于 anchor-free 的目标检测器被提出来了。其标签分配策略被简化成了从网格点到目标框中心或者角点的距离。遗憾的是,无论是 anchor-based 的“框分配”策略还是 anchor-free 的“点分配”策略,其始终会面临一个 many-to-one 的窘境,即对于一个 GT 框来说,会存在多个正样本与之对应。

这便意味着 NMS 成为了一种必不可少的手段,以避免产生冗余检测框。然而,引入 NMS 一方面会增加耗时,同时也会引入一些问题,譬如当 IoU 设置不恰当时会导致一些高置信度的正确目标框被过滤掉(密集场景下)。

当然,针对这个问题,后面也提出了不少解决方案。如最容易想到的就是 two-stage 模型的 one-to-one 即一对一分配策略,我们强制只将一个 GT 框分配给一个正样本,这样就可以避免引入 NMS,可惜效率方面是个极大的劣势。

又比如 One-Net 提出的最小代价分配(Minimum Cost Assignment),即于每个 GT,仅将一个最小代价样本分配为正样本,其它均为负样本,该方法不涉及手动制定的启发式规则或者复杂的二分图匹配。这里代价是指样本与真值之间的分类代价和位置代价的总和。

另一方面,诸如 DETR 系列的检测器,其直接利用 Transformer 的全局建模能力,将目标检测看成是一个集合预测的问题。为了实现端到端的检测,其使用的标签分配策略是二分匹配,使得一个 GT 只能分配到一个正样本。

由于篇(知)幅(识)有(盲)限(区),今天我们就讲到这。回到今天的主角,YOLOv10 的一大创新点便是引入了一种双重标签分配策略,其核心思想便是在训练阶段使用一对多的检测头提供更多的正样本来丰富模型的训练;而在推理阶段则通过梯度截断的方式,切换为一对一的检测头,如此一来便不在需要 NMS 后处理,在保持性能的同时减少了推理开销。

原理其实不难,大家可以看下代码理解下:

#https://github.com/THU-MIG/yolov10/blob/main/ultralytics/nn/modules/head.py
class v10Detect(Detect):max_det = -1def __init__(self, nc=80, ch=()):super().__init__(nc, ch)c3 = max(ch[0], min(self.nc, 100))  # channelsself.cv3 = nn.ModuleList(nn.Sequential(nn.Sequential(Conv(x, x, 3, g=x), Conv(x, c3, 1)), \nn.Sequential(Conv(c3, c3, 3, g=c3), Conv(c3, c3, 1)), \nn.Conv2d(c3, self.nc, 1)) for i, x in enumerate(ch))self.one2one_cv2 = copy.deepcopy(self.cv2)self.one2one_cv3 = copy.deepcopy(self.cv3)def forward(self, x):one2one = self.forward_feat([xi.detach() for xi in x], self.one2one_cv2, self.one2one_cv3)if not self.export:one2many = super().forward(x)if not self.training:one2one = self.inference(one2one)if not self.export:return {"one2many": one2many, "one2one": one2one}else:assert(self.max_det != -1)boxes, scores, labels = ops.v10postprocess(one2one.permute(0, 2, 1), self.max_det, self.nc)return torch.cat([boxes, scores.unsqueeze(-1), labels.unsqueeze(-1)], dim=-1)else:return {"one2many": one2many, "one2one": one2one}def bias_init(self):super().bias_init()"""Initialize Detect() biases, WARNING: requires stride availability."""m = self  # self.model[-1]  # Detect() module# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequencyfor a, b, s in zip(m.one2one_cv2, m.one2one_cv3, m.stride):  # froma[-1].bias.data[:] = 1.0  # boxb[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)
  1. 架构改进

  • Backbone & Neck:使用了先进的结构如 CSPNet 作为骨干网络,和 PAN 作为颈部网络,优化了特征提取和多尺度特征融合。
  • 大卷积核与分区自注意力:这些技术用于增强模型从大范围上下文中学习的能力,提高检测准确性而不显著增加计算成本。
  • 整体效率:引入空间-通道解耦下采样和基于秩引导的模块设计,减少计算冗余,提高整体模型效率。

这块没啥好讲的,大家看一眼框架图便清楚了,懂的都懂。:)

性能

YOLOv10 在各种模型规模上显示了显著的性能和效率改进。关键比较包括:

  • YOLOv10-S vs. RT-DETR-R18:YOLOv10-S 的速度提高了 1.8 倍,同时在 COCO 数据集上保持类似的平均精度(AP),参数和 FLOPs 分别减少了 2.8 倍。
  • YOLOv10-B vs. YOLOv9-C:YOLOv10-B 的延迟减少了 46%,参数减少了 25%,而性能相当。

扩展性

ModelTest Size#ParamsFLOPsAPvalLatency
YOLOv10-N6402.3M6.7G38.5%1.84ms
YOLOv10-S6407.2M21.6G46.3%2.49ms
YOLOv10-M64015.4M59.1G51.1%4.74ms
YOLOv10-B64019.1M92.0G52.5%5.74ms
YOLOv10-L64024.4M120.3G53.2%7.28ms
YOLOv10-X64029.5M160.4G54.4%10.70ms

YOLOv10 提供了多个模型规模(N、S、M、B、L、X),允许用户根据性能和资源约束选择最适合的模型。这种可扩展性确保了 YOLOv10 能够有效应用于各种实时检测任务,从移动设备上的轻量级应用到需要高精度的复杂任务。

实验

这里重点看下表3,可以看出,采用一对多的检测头性能最好(提供了更丰富的正样本监督信号),但延迟也高了许多(需要 NMS 做后处理);另外方面,一对一的检测头则性能会稍微下降,但延迟却低了不少;最终综合利用两者的优势能达到一个最优的精度-速度折衷。

【效果展示】

【部分实现代码】

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using OpenCvSharp;namespace FIRC
{public partial class Form1 : Form{Mat src = new Mat();Yolov10Manager ym = new Yolov10Manager();public Form1(){InitializeComponent();}private void button1_Click(object sender, EventArgs e){OpenFileDialog openFileDialog = new OpenFileDialog();openFileDialog.Filter = "图文件(*.*)|*.jpg;*.png;*.jpeg;*.bmp";openFileDialog.RestoreDirectory = true;openFileDialog.Multiselect = false;if (openFileDialog.ShowDialog() == DialogResult.OK){src = Cv2.ImRead(openFileDialog.FileName);pictureBox1.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(src);}}private void button2_Click(object sender, EventArgs e){if(pictureBox1.Image==null){return;}Stopwatch sw = new Stopwatch();sw.Start();var result = ym.Inference(src);sw.Stop();this.Text = "耗时" + sw.Elapsed.TotalSeconds + "秒";var resultMat = ym.DrawImage(result,src);pictureBox2.Image= OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultMat); //Mat转Bitmap}private void Form1_Load(object sender, EventArgs e){ym.LoadWeights(Application.StartupPath+ "\\weights\\yolov10n.onnx", Application.StartupPath + "\\weights\\labels.txt");}private void btn_video_Click(object sender, EventArgs e){var detector = new Yolov10Manager();detector.LoadWeights(Application.StartupPath + "\\weights\\yolov10n.onnx", Application.StartupPath + "\\weights\\labels.txt");VideoCapture capture = new VideoCapture(0);if (!capture.IsOpened()){Console.WriteLine("video not open!");return;}Mat frame = new Mat();var sw = new Stopwatch();int fps = 0;while (true){capture.Read(frame);if (frame.Empty()){Console.WriteLine("data is empty!");break;}sw.Start();var result = detector.Inference(frame);var resultImg = detector.DrawImage(result,frame);sw.Stop();fps = Convert.ToInt32(1 / sw.Elapsed.TotalSeconds);sw.Reset();Cv2.PutText(resultImg, "FPS=" + fps, new OpenCvSharp.Point(30, 30), HersheyFonts.HersheyComplex, 1.0, new Scalar(255, 0, 0), 3);//显示结果Cv2.ImShow("Result", resultImg);int key = Cv2.WaitKey(10);if (key == 27)break;}capture.Release();}}
}

【视频演示】

C# winform部署yolov10的onnx模型_哔哩哔哩_bilibiliC#部署yolov10官方onnx模型,首先转成Onnx模型然后即可调用。测试环境:vs2019netframework4.7.2onnxruntime1.16.3opencvsharp==4.8.0, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:我的开源代码居然被盗去卖钱?AI文字搜图搜视频,语义搜索新版整合包发布!,yolov10 tensorrt C++ 推理!全网首发!,C++使用纯opencv部署yolov9的onnx模型,重生紫薇之:容嬷嬷带我了解yolo v10! ----人工智能/计算机视觉/yolo,起猛了,一觉起来看到YOLOv10都发布了!我看看是谁还在研究yolov123456789的,C#YOLO工业滑轨螺丝缺失检测~示例,将yolov5-6.2封装成一个类几行代码完成语义分割任务,毕设项目—基于最新YOLOv10+ByteTrack+PaddleOCR实现交通状态分析 (功能:目标检测、轨迹跟踪、车牌检测、车牌号识别、单目测速及目标计数),labelme json转yolo工具用于目标检测训练数据集使用教程,将yolov8封装成一个类几行代码完成语义分割任务icon-default.png?t=N7T8https://www.bilibili.com/video/BV111421173R/?vd_source=989ae2b903ea1b5acebbe2c4c4a635ee

【测试环境】

vs2019,netframework4.7.2,onnxruntime1.16.3,opencvsharp4.8.0

【源码下载】

https://download.csdn.net/download/FL1623863129/89366968

【参考文献】

1 https://zhuanlan.zhihu.com/p/699842844

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/18286.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

灯塔工厂产业数字化平台解决方案(50页PPT)

方案介绍: 随着工业4.0和智能制造的快速发展,传统工厂正面临着转型升级的迫切需求。为了提升生产效率、优化资源配置、增强市场竞争力,我们推出了灯塔工厂产业数字化平台解决方案。该方案旨在通过先进的信息技术手段,将传统工厂转…

蒙特卡洛法求解机械臂工作空间(以IRB4600型工业机械臂为例)

1. 概念 工作空间是衡量机器人工作能力的一个重要的运动学指标,蒙特卡洛法是一种随机模拟方法,用于在计算机上估计某些统计量,对于要估计的统计量,通过模拟大量的随机抽样,并计算这些样本的随机值来估算这个统计量的值…

数字信号处理实验三:IIR数字滤波器设计及软件实现

一、实验目的 1. 掌握MATLAB中进行IIR模拟滤波器的设计的相关函数的应用; 2. 掌握MATLAB的工具箱中提供的常用IIR数字滤波器的设计函数的应用; 3.掌握MATLAB的工具箱中提供的模拟滤波器转数字滤波器的相关的设计函数的应用。 二、实验内容 本实验为…

CC1310 Debug interface is locked

XDS110连接CC1310板子,打开Smart RF 弹出窗口如下: 解决办法: 1 打开SmartRF Flash Programmer 2 选择连接的设备CC1310, 弹出如下窗口,点击OK。 3 点击Tools图标,选择CC26XX/CC13XX Forced Mass Erase。 4 在弹出的…

Windows11系统安装QEMU虚拟化软件

Windows11系统安装QEMU虚拟化软件 QEMU软件是一个通用的开源机器模拟器和虚拟机。本文档适用于在Windows 11系统平台上安装QEMU软件。 1. 安装准备 1.1 安装平台 Windows 11 1.2. 软件信息 软件名称软件版本安装路径QEMUQEMU-8.2.93D:\qemu 1.3软件下载 QEMU官网官网下…

【全开源】西陆家政系统源码小程序(FastAdmin+ThinkPHP+原生微信小程序)

打造高效便捷的家政服务平台 一、引言:家政服务的数字化转型 随着人们生活节奏的加快,家政服务需求日益增长。为了满足广大用户对高效、便捷的家政服务的需求,家政小程序系统源码应运而生。这款源码不仅能够帮助家政服务提供商快速搭建自己…

关于本人VIP付费文章说明

郑重声明:我写博客只是为了记录分享经验 自从上次写完数据结构系列后我就一直没有登陆,目前也没打算继续开新内容。今天偶然发现我之前写的文章被设为vip文章,要vip解锁才能看,我很确定当初我发布的时候选择的是公开,…

FastGPT + OneAPI 构建知识库

云端text-embedding模型 这个在前面的文章FastGPT私有化部署OneAPI配置大模型中其实已经说过,大概就是部署完成OneAPI后,分别新建令牌和渠道,并完成FastGPT的配置。 新建渠道 选择模型的类型并配置对应的词向量模型即可,这里我…

excel数据丢失怎么办?表格文件恢复的3个方法

Excel作为一个常用的表格文件,我们在工作中经常都需要用到它。最令人崩溃的事就是有时候我们辛辛苦苦用Excel完成了工作,但是突然发现Excel数据丢失。这可怎么办呢?如何找回丢失的Excel数据?下面小编就分享几种恢复办法。 方法一&…

FPGA——eMMC验证

一.FPGA基础 1.FPGA烧录流程 (1) 加载流文件 —— bitfile (2) 烧录文件 —— cmm 二.MMC 1.基础知识 (1)jz4740、mmc、emmc、sd之间的关系? jz4740——处理器 mmc——存储卡标准 emmc——mmc基础上发展的高效存储解决方案 sd—— 三.eMMC和SD case验证 1.ca…

Go 使用 RabbitMQ---------------之一

RabbitMQ 是一种消息代理。消息代理的主要目的是接收、存储并转发消息。在复杂的系统设计和微服务架构中,RabbitMQ 经常被用作中间件来处理和转发系统之间的消息,以确保数据的一致性和可靠性。正是因为提供了可靠的消息机制、跟踪机制和灵活的消息路由,常常被用于排队算法、…

MFC里的工具栏按钮图标如何使用外部图片?

🏆本文收录于「Bug调优」专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&…

据库管理-第196期 实战RDMA(20240528)

数据库管理196期 2024-05-28 数据库管理-第196期 实战RDMA(20240528)1 环境2 操作系统配置3 配置NVMe over RDMA4 挂载磁盘处理并挂载磁盘: 5 RDMA性能测试6 iSCSI部署7 iSCSI性能测试8 性能对比总结 数据库管理-第196期 实战RDMA&#xff08…

Transformer 从attention到grouped query attention (GQA)

Attention原理和理解 attention原理参考: Attention Is All You Need The Illustrated Transformer – Jay Alammar – Visualizing machine learning one concept at a time. Transformer图解 - 李理的博客 Attention首先对输入x张量乘以WQ, WK, WV得到query,…

软件程序设计规范(代码编写规范文档)-word下载

程序的编码是一个创造性极强的工作,必须要遵守一定的规则和限制,编码风格的重要性对软件项目开发来说是不言而喻的。 开发工程师在开发过程中必须遵守本规范,规范是代码编写及代码验收等管理环节中必须执行的标准。 编制基本原则:…

169. 多数元素

题目 解答 方法一:Boyer-Moore 投票算法 class Solution {func majorityElement(_ nums: [Int]) -> Int {var candidate 0var count 0for num in nums {if count 0 {candidate numcount 1} else {if candidate num {count 1} else {count - 1}}}return …

计算机毕业设计hadoop+spark+hive物流大数据分析平台 物流预测系统 物流信息爬虫 物流大数据 机器学习 深度学习

流程: 1.Python爬虫采集物流数据等存入mysql和.csv文件; 2.使用pandasnumpy或者MapReduce对上面的数据集进行数据清洗生成最终上传到hdfs; 3.使用hive数据仓库完成建库建表导入.csv数据集; 4.使用hive之hive_sql进行离线计算&…

webserver服务器从零搭建到上线(九)|⭐️EventLoop类(一)——详解成员变量、简述成员方法

在本节中&#xff0c;我们一起来仔细探讨一下EpollPoller类。该类可以说是muduo库中最最核心的类了&#xff0c;一定要搞懂&#xff01; 文章目录 私有成员using ChannelList std::vector<Channel*>looping_、quit_threadId_pollReturnTime_、poller_wakeup_fd、wakeupC…

一种基于单片机的智能饮水机设计

随着人们生活水平的提高&#xff0c;对美好生活质量的追求也越来越高。饮 水机是人们日常生活不可或缺的&#xff0c;实现饮水机的智能化控制不但方便&#xff0c; 而且更加安全。本文提出一种基于单片机的智能饮水控制系统&#xff0c;通过传 感器实现对水温的监测&#xff0c…

Redis(十四) 主从模式

文章目录 前言什么是分布式系统主从模式实现Redis主从模式主从模式原理nagle 算法拓扑结构主从模式实现的过程psync实时复制 前言 Redis 作为在内存中操作数据的服务器系统&#xff0c;每时都会接收成千上万的请求&#xff0c;如果我们的业务只在单个服务器上面部署了 Redis&a…