实战Java虚拟机-实战篇

一、内存调优

1.内存溢出和内存泄漏

  • 内存泄漏(memory leak):在Java中如果不再使用一个对象,但是该对象依然在GC ROOT的引用链上,这个对象就不会被垃圾回收器回收,这种情况就称之为内存泄漏。
  • 内存泄漏绝大多数情况都是由堆内存泄漏引起的,所以后续没有特别说明则讨论的都是堆内存泄漏。

2.内存泄漏的常见场景 

  • 内存泄漏导致溢出的常见场景是大型的Java后端应用中,在处理用户的请求之后,没有及时将用户的数据删除。随着用户请求数量越来越多,内存泄漏的对象占满了堆内存最终导致内存溢出。
  • 这种产生的内存溢出会直接导致用户请求无法处理,影响用户的正常使用。重启可以恢复应用使用,但是在运行一段时间之后依然会出现内存溢出。
  • 第二种常见场景是分布式任务调度系统如Elastic-job、Quartz等进行任务调度时,被调度的Java应用在调度任务结束中出现了内存泄漏,最终导致多次调度之后内存溢出。
  • 这种产生的内存溢出会导致应用执行下次的调度任务执行。同样重启可以恢复应用使用,但是在调度执行一段时间之后依然会出现内存溢出。

3.解决内存溢出的思路

检测问题工具

Top命令
  • top命令是linux下用来查看系统信息的一个命令,它提供给我们去实时地去查看系统的资源,比如执行时的进程、线程和系统参数等信息。
  • 进程使用的内存为RES(常驻内存)- SHR(共享内存)

VisualVM
  • VisualVM是多功能合一的Java故障排除工具并且他是一款可视化工具,整合了命令行 JDK 工具和轻量级分析功能,功能非常强大。
  • 这款软件在Oracle JDK 6~8 中发布,但是在 Oracle JDK 9 之后不在JDK安装目录下需要单独下载。下载地址:https://visualvm.github.io/

Arthas

Arthas 是一款线上监控诊断产品,通过全局视角实时查看应用 load、内存、gc、线程的状态信息,并能在不修改应用代码的情况下,对业务问题进行诊断,包括查看方法调用的出入参、异常,监测方法执行耗时,类加载信息等,大大提升线上问题排查效率。

Prometheus + Grafana

Prometheus+Grafana是企业中运维常用的监控方案,其中Prometheus用来采集系统或者应用的相关数据,同时具备告警功能。Grafana可以将Prometheus采集到的数据以可视化的方式进行展示。

堆内存状况的对比

产生内存溢出原因一 :代码中的内存泄漏

1、equals()和hashCode()导致的内存泄漏

2、非静态的内部类和匿名内部类的错误使用导致内存泄漏

3、由于线程池中的线程不被回收导致的ThreadLocal内存泄漏

4、由于JDK6中的字符串常量池位于永久代,intern被大量调用并保存产生的内存泄漏

5、大量的数据在静态变量中被引用,但是不再使用,成为了内存泄漏

产生内存溢出原因二 : 并发请求问题

  • 并发请求问题指的是用户通过发送请求向Java应用获取数据,正常情况下Java应用将数据返回之后,这部分数据就可以在内存中被释放掉。
  • 并发请求问题指的是用户通过发送请求向Java应用获取数据,正常情况下Java应用将数据返回之后,这部分数据就可以在内存中被释放掉。但是由于用户的并发请求量有可能很大,同时处理数据的时间很长,导致大量的数据存在于内存中,最终超过了内存的上限,导致内存溢出。这类问题的处理思路和内存泄漏类似,首先要定位到对象产生的根源。

诊断 – 内存快照

  • 当堆内存溢出时,需要在堆内存溢出时将整个堆内存保存下来,生成内存快照(Heap Profile )文件。
    • 生成内存快照的Java虚拟机参数:
      •     -XX:+HeapDumpOnOutOfMemoryError:发生OutOfMemoryError错误时,自动生成hprof内存快照文件。
      • -XX:HeapDumpPath=<path>:指定hprof文件的输出路径。
  • 使用MAT打开hprof文件,并选择内存泄漏检测功能,MAT会自行根据内存快照中保存的数据分析内存泄漏的根源。

MAT内存泄漏检测的原理 – 支配树

MAT提供了称为支配树(Dominator Tree)的对象图。支配树展示的是对象实例间的支配关系。在对象引用图中,所有指向对象B的路径都经过对象A,则认为对象A支配对象B。

MAT内存泄漏检测的原理 – 深堆和浅堆

支配树中对象本身占用的空间称之为浅堆(Shallow Heap)。

支配树中对象的子树就是所有被该对象支配的内容,这些内容组成了对象的深堆(Retained Heap),也称之为保留集( Retained Set ) 。深堆的大小表示该对象如果可以被回收,能释放多大的内存空间。

解决内存溢出的思路

修复问题

并发引起内存溢出 – 设计不当
  • 系统的方案设计不当,比如:
  • 从数据库获取超大数据量的数据
  • 线程池设计不当,生产者-消费者模型,消费者消费性能问题

解决方案:优化设计方案

并发引起内存溢出 - 参数不当
  • 由于参数设置不当,比如堆内存设置过小,导致并发量增加之后超过堆内存的上限。

解决方案:调整参数,

二、GC调优

GC调优

  • GC调优指的是对垃圾回收(Garbage Collection)进行调优。GC调优的主要目标是避免由垃圾回收引起程序性能下降。

GC调优的核心分成三部分:

1、通用Jvm参数的设置。

2、特定垃圾回收器的Jvm参数的设置。

3、解决由频繁的FULLGC引起的程序性能问题。

GC调优没有没有唯一的标准答案,如何调优与硬件、程序本身、使用情况均有关系,重点学习调优的工具和方法。

GC调优的核心指标

所以判断GC是否需要调优,需要从三方面来考虑,与GC算法的评判标准类似:

1.吞吐量(Throughput) 吞吐量分为业务吞吐量和垃圾回收吞吐量

业务吞吐量指的在一段时间内,程序需要完成的业务数量。比如企业中对于吞吐量的要求可能会是这样的:

  • 支持用户每天生成10000笔订单
  • 在晚上8点到10点,支持用户查询50000条商品信息

保证高吞吐量的常规手段有两条:

1、优化业务执行性能,减少单次业务的执行时间

2、优化垃圾回收吞吐量

垃圾回收吞吐量

垃圾回收吞吐量指的是 CPU 用于执行用户代码的时间与 CPU 总执行时间的比值,即吞吐量 = 执行用户代码时间 /(执行用户代码时间 + GC时间)。吞吐量数值越高,垃圾回收的效率就越高,允许更多的CPU时间去处理用户的业务,相应的业务吞吐量也就越高。

2. 延迟(Latency)

延迟指的是从用户发起一个请求到收到响应这其中经历的时间。比如企业中对于延迟的要求可能会是这样的:

所有的请求必须在5秒内返回给用户结果

延迟 = GC延迟 + 业务执行时间,所以如果GC时间过长,会影响到用户的使用。

3. 内存使用量

内存使用量指的是Java应用占用系统内存的最大值,一般通过Jvm参数调整,在满足上述两个指标的前提下,这个值越小越好。

发现问题工具

jstat工具

  • Jstat工具是JDK自带的一款监控工具,可以提供各种垃圾回收、类加载、编译信息等不同的数据。
  • 使用方法为:jstat -gc 进程ID 每次统计的间隔(毫秒) 统计次数

visualvm插件

VisualVm中提供了一款Visual Tool插件,实时监控Java进程的堆内存结构、堆内存变化趋势以及垃圾回收时间的变化趋势。同时还可以监控对象晋升的直方图。

Prometheus + Grafana

Prometheus+Grafana是企业中运维常用的监控方案,其中Prometheus用来采集系统或者应用的相关数据,同时具备告警功能。Grafana可以将Prometheus采集到的数据以可视化的方式进行展示。

GC日志

  • 通过GC日志,可以更好的看到垃圾回收细节上的数据,同时也可以根据每款垃圾回收器的不同特点更好地发现存在的问题。
  • 使用方法(JDK 8及以下):-XX:+PrintGCDetails -Xloggc:文件名
  • 使用方法(JDK 9+):-Xlog:gc*:file=文件名

GC Viewer

GCViewer是一个将GC日志转换成可视化图表的小工具,github地址:

https://github.com/chewiebug/GCViewer

使用方法:java -jar gcviewer_1.3.4.jar 日志文件.log

GCeasy

GCeasy是业界首款使用AI机器学习技术在线进行GC分析和诊断的工具。定位内存泄漏、GC延迟高的问题,提供JVM参数优化建议,支持在线的可视化工具图表展示。

官方网站:https://gceasy.io/

常见的GC模式

特点:呈现锯齿状,对象创建之后内存上升,一旦发生垃圾回收之后下降到底部,并且每次下降之后的内存大小接近,存留的对象较少。

一、正常情况

特点:呈现锯齿状,对象创建之后内存上升,一旦发生垃圾回收之后下降到底部,并且每次下降之后的内存大小接近,存留的对象较少。

二、缓存对象过多

特点:呈现锯齿状,对象创建之后内存上升,一旦发生垃圾回收之后下降到底部,并且每次下降之后的内存大小接近,处于比较高的位置。

问题产生原因: 程序中保存了大量的缓存对象,导致GC之后无法释放,可以使用MAT或者HeapHero等工具进行分析内存占用的原因。

三、内存泄漏

特点:呈现锯齿状,每次垃圾回收之后下降到的内存位置越来越高,最后由于垃圾回收无法释放空间导致对象无法分配产生OutOfMemory的错误。

问题产生原因: 程序中保存了大量的内存泄漏对象,导致GC之后无法释放,可以使用MAT或者HeapHero等工具进行分析是哪些对象产生了内存泄漏。

四、持续的FullGC

特点:在某个时间点产生多次Full GC,CPU使用率同时飙高,用户请求基本无法处理。一段时间之后恢复正常。
问题产生原因: 在该时间范围请求量激增,程序开始生成更多对象,同时垃圾收集无法跟上对象创建速率,导致·持续地在进行FULL GC。GC分析报告

五、元空间不足导致的FULLGC

特点:堆内存的大小并不是特别大,但是持续发生FULLGC。

问题产生原因: 元空间大小不足,导致持续FULLGC回收元空间的数据。GC分析报告

解决GC问题的手段

优化基础JVM参数

参数1 : -Xmx 和 –Xms

-Xmx参数设置的是最大堆内存,但是由于程序是运行在服务器或者容器上,计算可用内存时,要将元空间、操作系统、其它软件占用的内存排除掉。

优化基础JVM参数
参数1 : -Xmx 和 –Xms

-Xms用来设置初始堆大小,建议将-Xms设置的和-Xmx一样大,有以下几点好处:

  • 运行时性能更好,堆的扩容是需要向操作系统申请内存的,这样会导致程序性能短期下降。
  • 可用性问题,如果在扩容时其他程序正在使用大量内存,很容易因为操作系统内存不足分配失败。
  • 启动速度更快,Oracle官方文档的原话:如果初始堆太小,Java 应用程序启动会变得很慢,因为 JVM 被迫频繁执行垃圾收集,直到堆增长到更合理的大小。为了获得最佳启动性能,请将初始堆大小设置为与最大堆大小相同。
参数2 : -XX:MaxMetaspaceSize 和 –XX:MetaspaceSize

-XX:MaxMetaspaceSize=值 参数指的是最大元空间大小,默认值比较大,如果出现元空间内存泄漏会让操作系统可用内存不可控,建议根据测试情况设置最大值,一般设置为256m。

-XX:MetaspaceSize=值 参数指的是到达这个值之后会触发FULLGC(网上很多文章的初始元空间大小是错误的),后续什么时候再触发JVM会自行计算。如果设置为和MaxMetaspaceSize一样大,就不会FULLGC,但是对象也无法回收。

参数3 : -Xss虚拟机栈大小

如果我们不指定栈的大小,JVM 将创建一个具有默认大小的栈。大小取决于操作系统和计算机的体系结构。
比如Linux x86 64位 : 1MB,如果不需要用到这么大的栈内存,完全可以将此值调小节省内存空间,合理值为256k – 1m之间。

使用:-Xss256k

参数4 : 不建议手动设置的参数

由于JVM底层设计极为复杂,一个参数的调整也许让某个接口得益,但同样有可能影响其他更多接口。

‐XX:SurvivorRatio 伊甸园区和幸存者区的大小比例,默认值为8。

‐XX:MaxTenuringThreshold 最大晋升阈值,年龄大于此值之后,会进入老年代。另外JVM有动态年龄判断机制:将年龄从小到大的对象占据的空间加起来,如果大于survivor区域的50%,然后把等于或大于该年龄的对象,放入到老年代。

其他参数 :
  • -XX:+DisableExplicitGC

禁止在代码中使用System.gc(), System.gc()可能会引起FULLGC,在代码中尽量不要使用。使用
DisableExplicitGC参数可以禁止使用System.gc()方法调用。

  • -XX:+HeapDumpOnOutOfMemoryError:发生OutOfMemoryError错误时,自动生成hprof内存快照文件。

-XX:HeapDumpPath=<path>:指定hprof文件的输出路径。

  • 打印GC日志

JDK8及之前 : -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:文件路径

JDK9及之后 : -Xlog:gc*:file=文件路径

JVM参数模板:

-Xms1g
-Xmx1g
-Xss256k
-XX:MaxMetaspaceSize=512m
-XX:+DisableExplicitGC
-XX:+HeapDumpOnOutOfMemoryError
-XX:HeapDumpPath=/opt/logs/my-service.hprof
-XX:+PrintGCDetails
-XX:+PrintGCDateStamps
-Xloggc:文件路径

注意:

JDK9及之后gc日志输出修改为 -Xlog:gc*:file=文件名

堆内存大小和栈内存大小根据实际情况灵活调整。

垃圾回收器的选择

垃圾回收器的组合关系

垃圾回收器是垃圾回收算法的具体实现。

性能调优

应用程序在运行过程中经常会出现性能问题,比较常见的性能问题现象是:

1、通过top命令查看CPU占用率高,接近100甚至多核CPU下超过100都是有可能的。

2、请求单个服务处理时间特别长,多服务使用skywalking等监控系统来判断是哪一个环节性能低下。

3、程序启动之后运行正常,但是在运行一段时间之后无法处理任何的请求(内存和GC正常)。

线程转储的查看方式

线程转储(Thread Dump)提供了对所有运行中的线程当前状态的快照。线程转储可以通过jstack、visualvm等工具获取。其中包含了线程名、优先级、线程ID、线程状态、线程栈信息等等内容,可以用来解决CPU占用率高、死锁等问题。

线程转储(Thread Dump)中的几个核心内容:

  • 名称: 线程名称,通过给线程设置合适的名称更容易“见名知意”
  • 优先级(prio):线程的优先级
  • Java ID(tid):JVM中线程的唯一ID
  • 本地 ID (nid):操作系统分配给线程的唯一ID
  • 状态:线程的状态,分为:
    • NEW – 新创建的线程,尚未开始执行
    • RUNNABLE –正在运行或准备执行
    • BLOCKED – 等待获取监视器锁以进入或重新进入同步块/方法
    • WAITING – 等待其他线程执行特定操作,没有时间限制
    • TIMED_WAITING – 等待其他线程在指定时间内执行特定操作
    • TERMINATED – 已完成执行
  • TERMINATED – 已完成执行

更精细化的性能测试

JIT对程序性能的影响

Java程序在运行过程中,JIT即时编译器会实时对代码进行性能优化,所以仅凭少量的测试是无法真实反应运行系统最终给用户提供的性能。如下图,随着执行次数的增加,程序性能会逐渐优化。

正确地测试代码性能

OpenJDK中提供了一款叫JMH(Java Microbenchmark Harness)的工具,可以准确地对Java代码进行基准测试,量化方法的执行性能。

官网地址:https://github.com/openjdk/jmh

JMH会首先执行预热过程,确保JIT对代码进行优化之后再进行真正的迭代测试,最后输出测试的结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/14346.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一番赏小程序开发,为玩家带来线上抽赏魅力

随着人们对娱乐消费的增加&#xff0c;以及二次元文化的快速发展&#xff0c;以动漫IP为主的一番赏受到了越来越多的年轻人关注&#xff0c;一番赏市场迎来了黄金发展期&#xff01; 一番赏的运营模式是以“限量”为主&#xff0c;不管什么商品数量都是有限的&#xff0c;因此…

微软刚发布的Copilot+PC为什么让Intel和AMD尴尬?2024 AI PC元年——产业布局及前景展望

美国东部时间5月20日在微软位于华盛顿的新园区举行的发布会上&#xff0c;宣布将旗下AI助手Copilot全面融入Windows系统&#xff0c;能够在不调用云数据中心的情况下处理更多人工智能任务。 “将世界作为一个提示词就从Windows系统开始”。微软的新PC将是“CopilotPC”&#xf…

[Algorithm][回溯][记忆化搜索][最长递增子序列][猜数字大小Ⅱ][矩阵中的最长递增路径]详细讲解

目录 1.最长递增子序列1.题目链接2.算法原理详解3.代码实现 2.猜数字大小 II1.题目链接2.算法原理详解3.代码实现 3.矩阵中的最长递增路径1.题目链接2.算法原理详解3.代码实现 1.最长递增子序列 1.题目链接 最长递增子序列 2.算法原理详解 题目解析&#xff1a;从每个位置&am…

内部类知识点

什么是内部类&#xff1f; 内部类何时出现&#xff1f;B类是A类的一部分&#xff0c;且B单独存在无意义 内部类分类 成员内部类&#xff1a; 当内部类被private修饰后&#xff0c;不能用方法2 调用外部类成员变量 内部类里面有隐藏的outer this来记录 静态内部类 创建对象&…

水电集中抄表是什么?

1.定义分析&#xff1a;水电集中抄表 水电集中抄表是一种现代化能源管理体系方法&#xff0c;它利用先进的信息科技&#xff0c;如物联网技术、云计算等&#xff0c;完成对水电表数据的远程智能采集与处理。这种方法改变了传统的人工上门服务抄表方式&#xff0c;提高了效率&a…

Biome-BGC生态系统模型与Python融合技术实践应用

Biome-BGC是利用站点描述数据、气象数据和植被生理生态参数&#xff0c;模拟日尺度碳、水和氮通量的有效模型&#xff0c;其研究的空间尺度可以从点尺度扩展到陆地生态系统。 在Biome-BGC模型中&#xff0c;对于碳的生物量积累&#xff0c;采用光合酶促反应机理模型计算出每天…

ECharts实现地图飞线

echarts版本&#xff1a;https://echarts.apache.org/zh/changelog.html v5.x.x版本&#xff1a;不提供china.js和china.json文件 v4.x.x版本&#xff1a;使用npm安装echarts&#xff0c;默认包含china.js和china.json文件 目录 一、Html工程 二、vue工程 三、vue工程 四、矢…

c/c++ 编译过程

C的编译过程通常可以分为四个阶段&#xff1a;预处理、编译、汇编和链接。下面是这四个阶段的详细说明&#xff1a; 预处理&#xff08;Preprocessing&#xff09;&#xff1a;在这个阶段&#xff0c;预处理器&#xff08;cpp&#xff09;会处理源代码文件中的预处理指令&#…

【科普知识】伺服电机中的内置制动器

在工业自动化和机器人技术快速发展的今天&#xff0c;伺服电机作为核心驱动元件&#xff0c;其性能与功能直接影响整个系统的运行效率与稳定性。 近年来&#xff0c;一体化伺服电机技术不断融合创新&#xff0c;并逐步加入了许多新的硬件和软件的功能&#xff0c;为工业自动化领…

【施磊】C++语言基础提高:深入学习C++语言先要练好的内功

课程总目录 文章目录 一、进程的虚拟地址空间内存划分和布局二、函数的调用堆栈详细过程三、程序编译链接原理1. 编译过程2. 链接过程 一、进程的虚拟地址空间内存划分和布局 任何的编程语言 → \to → 产生两种东西&#xff1a;指令和数据 编译链接完成之后会产生一个可执行…

Linux备份服务及rsync企业备份架构(应用场景)

备份服务概述 备份服务:需要使用到脚本,打包备份,定时任务. 备份服务:rsyncd服务,不同主机之间数据传输. 特点&#xff1a; rsync是个服务也是命令使用方便&#xff0c;具有多种模式传输数据的时候是增量传输 增量与全量&#xff1a; 全量 &#xff1a;无论多少数据全部推…

设备管理全解析:从选购到报废的全方位指南

在现代企业快速发展、智能化运营过程中&#xff0c;企业设备管理是保障生产连续性和效率的核心环节&#xff0c;其重要性不言而喻。然而&#xff0c;许多企业在设备管理内容流程方面仍然使用传统管理办法&#xff0c;这不仅影响了生产效率&#xff0c;也增加了不必要的成本。那…

vuejs路由和组件系统

前端路由原理 createRouter * hash* window.addEventListener(hashChange)* 两种实现路由切换的模式&#xff1a;UI组件&#xff08;router-link&#xff0c;router-view&#xff09;&#xff0c;Api&#xff08;push()方法&#xff09; * history * HTML5新增的API &#xff0…

每日一题(1)

在看一本08年出版的书的时候&#xff0c;看到了这样一个问题&#xff0c;感觉答案很奇怪&#xff1a; public class demo_p22 {public static void main(String args[]){int sCook1,sFish2;//各技能标记character ch1new character();if(ch1.haveSkill(sCook))System.out.print…

【CSP CCF记录】202012-2 期末预测之最佳阈值

题目 过程 思路 第一次没用前缀和&#xff0c;暴力求解得50分。 采用前缀和方法。 1. 对原数组stu[i]进行排序。 2. 计算前缀和数组s[]&#xff0c;s[i]表示安全指数的y_i的前缀和&#xff0c;即安全指数小于等于y_i时的实际挂科情况&#xff0c;y_i之前有多少个未挂科&am…

无线领夹麦克风哪个品牌好?无线麦克风品牌排行榜前十名推荐

​在当今的数字化浪潮中&#xff0c;个人声音的传播和记录变得尤为重要。无论是会议中心、教室讲台还是户外探险&#xff0c;无线领夹麦克风以其卓越的便携性和连接稳定性&#xff0c;成为了人们沟通和表达的首选工具。面对市场上琳琅满目的无线麦克风选择&#xff0c;为了帮助…

Python筑基之旅-MySQL数据库(三)

目录 一、数据库操作 1、创建 1-1、用mysql-connector-python库 1-2、用PyMySQL库 1-3、用PeeWee库 1-4、用SQLAlchemy库 2、删除 2-1、用mysql-connector-python库 2-2、用PyMySQL库 2-3、用PeeWee库 2-4、用SQLAlchemy库 二、数据表操作 1、创建 1-1、用mysql-…

记录Python低代码开发框架zdppy_amcrud的开发过程

实现新增接口 基础代码 import env import mcrud import api import snowflakeenv.load(".env") db mcrud.new_env()table "user" columns ["name", "age"]async def add_user(req):data await api.req.get_json(req)values [d…

SkyEye对接CANoe:助力汽车软件功能验证

01.简介 CANoe&#xff08;CAN open environment&#xff09;是德国Vector公司专为汽车总线设计而开发的一款通用开发环境&#xff0c;作为车载网络和ECU开发、测试和分析的专业工具&#xff0c;支持从需求分析到系统实现的整个系统的开发过程。CANoe丰富的功能和配置选项被OE…