【施磊】C++语言基础提高:深入学习C++语言先要练好的内功


课程总目录


文章目录

  • 一、进程的虚拟地址空间内存划分和布局
  • 二、函数的调用堆栈详细过程
  • 三、程序编译链接原理
    • 1. 编译过程
    • 2. 链接过程


一、进程的虚拟地址空间内存划分和布局

任何的编程语言 → \to 产生两种东西:指令和数据

编译链接完成之后会产生一个可执行文件xxx.exe,会把程序从磁盘加载到内存中,不可能直接加载到物理内存!!!

环境: x86 32位linux环境

程序:

int gdata1 = 10;
int gdata2 = 0;
int gdata3;static int gdata4 = 11;
static int gdata5 = 0;
static int gdata6;int main()
{int a = 12;int b = 0;int c;static int e = 13;static int f = 0;static int g;return 0;
}

linux系统会给当前进程分配一个 232(4G)大小的一块空间(进程的虚拟地址空间),大小和环境的位数相关,如果是64位,则为8G

在这里插入图片描述

注意区分虚拟内存虚拟地址空间,这是两个不同的概念

  1. 0x00000000 ~ 0x08048000
    这段无法被访问,如果运行char *p = nullptr;strlen(p);则会报错,因为空指针在这段区域,char *src = nullptr;strcpy(dest, src);也会报错

  2. 0x08048000 ~ 0xC0000000

    • .text(代码段): 放指令只读)。main函数中的三个初始化 a, b, c 语句,都会转化为一条mov指令,如mov dword ptr[a], 0xCH,如果cout << c,此时的c是什么不确定(参考文章),它是栈上的无效值;int main(){}以及cout << c << g << endl;都是指令,都存放在 .text

    int a = 12; 这条语句不产生符号,只产生对应的汇编指令,对应指令存放在 .text上,但是当指令运行的时候,指令做的是在栈上开辟4字节的空间将12放进去

    • .rodata: 只读数据read only。char *p = "hello world";其中p在栈上,常量字符串"hello world"就存储在 .rodata段,但是如果*p = 'a';,通过指针让常量字符串的第一个字符修改为a,可以编译但不能运行,因为这一部分是只读的
    • .data(数据段): 用于存储已经初始化并且不为0全局变量和静态变量,这些变量在程序运行之初就有了确定的初始值,在程序执行之前就会被初始化,因此需要分配实际的存储空间。 [gdata1 & gdata4 & e]
    • .bss: 用于存储未初始化和已经初始化为0全局变量和静态变量[gdata2 & gdata3 & gdata5 & gdata6 & f & g]

    此时cout << gdata3 << endl;输出为0,因为gdata3存放在 .bss段。操作系统会把没初始化的变量全部置为0

    • .heap:堆
    • 加载共享库:在window系统中是*.dll,在linux中是*.so
    • stack:栈,函数运行或产生线程时,产生的栈空间,从下往上(高地址向地地址)进行增长
    • 命令行参数和环境变量

在 Linux 中,进程在内存中一般会分为五个段,包含了从磁盘载入的程序代码以及其他数据。即代码段、数据段、BSS段、堆、栈

  • 0xC0000000 ~ 0xFFFFFFFF
    • 内核空间

在这里插入图片描述

每一个进程的用户空间是私有的,但是内核空间是共享的。例如匿名管道通信,就是在内核空间中分配出一部分内存,进程1往里写内容,进程2和3都能看见。

二、函数的调用堆栈详细过程

int sum(int a, int b)
{int temp = 0;temp = a + b;return temp; 
}int main()
{int a = 10;int b = 20;int ret = sum(a, b);cout << "ret:" << ret <<endl;return 0;
}

问题一:main函数调用sum,sum执行完后,怎么知道回到哪个函数
问题二:sum函数执行完,回到main函数后,怎么知道从哪一行指令继续运行

在这里插入图片描述
程序分析:
int a = 10; → \to mov dword ptr[ebp-04H], 0AH
int b = 20; → \to mov dword ptr[ebp-08H], 14H
int ret = sum(a, b);编译后会将位置为ptr[ebp-0Ch]命名为ret,之后是调用函数,先从右向左向栈顶压入形式参数a和b,同时esp也会随之移到栈顶,即

mov eax, dword ptr[ebp-08H]
push eax
mov eax, dword ptr[ebp-04H]
push eax
call sum  // 函数调用指令,会做两件事,将下一条命令的地址(0x08124458)压栈,进入sum
 // sum函数返回后
add esp, 8   // 本条指令地址(假如地址为0x08124458)将给形参分配的地址交还给系统
mov dword ptr[ebp-0CH], eax   // 将结果放到ret中

由此也可见,在函数调用过程中,形参的内存开辟是在调用函数时就分配好的

进入sum函数,在int temp = 0;执行之前,即左括号{int temp = 0;之间,会执行下面的汇编代码

push ebp  // 此时ebp指向main函数栈帧的栈底,把此地址记录下来
mov ebp, esp  // 把esp赋给ebp,此时ebp指向sum函数栈帧的栈底
sub esp, 4CH  // 给sum函数开辟栈帧空间

int temp = 0; → \to mov dword ptr[ebp-04H], 0
temp = a + b;

mov eax, dword ptr[ebp+0CH]  // 取形参b的值存到eax
add eax, dword ptr[ebp+08H]  // 取形参a的值,和b相加,存到eax
mov dword ptr[ebp-04H], eax  // a+b结果存到temp

return temp; → \to mov eax, dword ptr[ebp-04H]

右括号},回退栈帧

mov esp, ebp  // 把ebp赋给esp,把栈空间归还给系统,但并未清空栈中内容
pop ebp  // 出栈,并把栈里的数值给ebp,即退回main函数栈帧的栈底,同时esp+4
ret  // 出栈,把出栈内容(0x08124458)放在CPU的PC寄存器中,同时esp+4

返回main函数中

 // sum函数返回后
add esp, 8   // 本条指令地址(假如地址为0x08124458)将给形参分配的地址交还给系统
mov dword ptr[ebp-0CH], eax   // 将结果放到ret中

之后再打印,return,结束程序

注:

数值 ≤ 4B,通过eax寄存器带出
4B < 数值 <= 8B,通过eax和edx两个寄存器带出
数值 > 8B,函数调用之前产生临时量,再把临时量地址入栈,被调用函数return处通过偏移ebp访问临时量。

三、程序编译链接原理

编译过程: 预编译 → \to 编译 → \to 汇编 → \to 二进制可重定位的目标文件(*.obj / *.o)

链接过程: 编译完成的所有.o文件 + 静态库文件(Linux下是*.a,Windows下是*.lib)
两个核心步骤:(1)所有.o文件段的合并;符号表合并后,进行符号解析
       (2)符号的重定位(重定向)【链接的核心】

最终在工程目录下 → \to win下得到xxx.exe,Linux下得到a.out

我们需要关注的点:

  1. *.o 文件的格式组成是什么样子的?
  2. 可执行文件的组成格式是什么样子的?
  3. 链接的两步做的是什么事情?
  4. 符号表的输出 → \to 符号,符号怎么理解?
  5. 符号什么时候分配虚拟地址(在用户空间上)?

程序:
main.cpp:

//引用sum.cpp文件里面定义的全局变量以及函数
extern int gdata;
int sum(int, int);int data = 20;int main()
{int a = gdata;int b = data;int ret = sum(a, b);return 0;
}

sum.cpp:

int gdata = 10;
int sum(int a, int b)
{return a+b;
}

1. 编译过程

C++文件预编译编译汇编二进制可重定位的目标文件(*.obj / *.o)
main.cpp
sum.cpp
处理#开头的命令语法分析、语义分析、词法分析、代码优化
g++ -O 0/1/2/3 指定优化等级
编译完成之后生成特定架构下的汇编代码main.o
sum.o

预编译阶段:#pragma lib 和 #pragma link 例外,不是在预编译阶段完成的,而是在链接阶段完成的,这俩是用于处理链接阶段的外部库文件

现在来看我们的程序

首先进行编译g++ -c xxx.cpp
在这里插入图片描述
符号表:汇编器在把汇编码转成最终的.o文件时就会生成一个符号表

看一下符号表objdump -t xxx.o
在这里插入图片描述

可以看到左边全为0,即编译过程中符号不分配虚拟地址,在链接过程中分配虚拟地址

分析:
在这里插入图片描述

如果引用了外部文件,也会将外部文件中的符号产生在自己的符号表中。如果定义了main函数,则在符号表中函数的符号就是函数名,放在.text(代码段);定义了全局变量data且值为20不等于0,因此放在.data(数据段);引用的gdata也产生了符号gdata,sum也产生了符号_z3sumii,但他们都是*UND*,这是符号的引用,而不是符号的定义。

sum.o文件的符号表中中,需要由函数名字和形参列表一起产生符号,例如这里的sumii解释为sum_int_int

符号表的第二列,l表示locallocal的符号只能在当前文件中看见;g表示globalglobal的符号在其他文件也看得见。因此在链接时,所有.obj文件在一起链接,链接器可以看见所有global的符号,但看不见local符号。

.o文件的组成,可以用readelf -S main.o打印段表,用readelf -h main.o打印文件头(节头部表):

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

回答问题1:*.o 文件的格式组成是什么样子的?
答:由上图可见,是由各种段组成的(elf文件头 .text .data .bss .symtab 等等)

编译完成后,.o文件代码段放入的指令如下,此时符号的地址位置填充的是0,这也是.o文件无法运行的原因之一,可以用objdump -S main.o打印代码段
在这里插入图片描述

2. 链接过程

步骤一:

  • 所有.o文件段的合并:在链接过程中,就要将main.osum.o的各个段进行合并,如.text段和.text段进行合并,.data段和.data段进行合并,.bss段和.bss段进行合并。包括段表和符号表,全部都进行合并。
  • 符号表合并后,进行符号解析:所有对符号的引用,都要找到该符号定义的地方。从原本的*UND*找到对应的在.text.data上的定义。如果链接器没有找到对引用符号的定义,会报错“符号未定义”;如果找到多个对符号的定义(重定义),会报错“符号重定义”在符号解析成功后,给所有的符号分配虚拟地址。

步骤二:

  • 符号的重定位(重定向):将代码段中的对应符号地址修改为为其分配的虚拟地址。

链接器指定入口并进行链接ld -e main *.o,其中-e是指定main作为入口,这样在链接生成的输出文件a.out文件的文件头会将main函数的第一行地址401000作为入口点地址进行记录

objdump -t a.out

在这里插入图片描述

可以看到所有符号都分配地址了,都放到对应的位置了

objdump -S a.out

在这里插入图片描述

readelf -S a.out

在这里插入图片描述

回答问题2:可执行文件的组成格式是什么样子的?
答:由上图可见,可执行文件也是由各种段组成的

readelf -h a.out

在这里插入图片描述

可以看到这是可执行文件,入口是main函数的第一行地址401000

readelf -l a.out

在这里插入图片描述

可执行文件的段和重定向文件的段几乎一致,只是多了一个program headers段,可用readelf -l a.out打印。运行可执行文件的时候,program headers段中LOAD哪些段,就是告诉系统把哪些段加载到内存中,如上图,一般会将.text段和.data段加载到内存中

运行一个可执行文件:

  • 加载哪些内容 → \to 看program headers段
  • 从哪里开始运行 → \to 文件头中的入口地址
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/14333.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux备份服务及rsync企业备份架构(应用场景)

备份服务概述 备份服务:需要使用到脚本,打包备份,定时任务. 备份服务:rsyncd服务,不同主机之间数据传输. 特点&#xff1a; rsync是个服务也是命令使用方便&#xff0c;具有多种模式传输数据的时候是增量传输 增量与全量&#xff1a; 全量 &#xff1a;无论多少数据全部推…

设备管理全解析:从选购到报废的全方位指南

在现代企业快速发展、智能化运营过程中&#xff0c;企业设备管理是保障生产连续性和效率的核心环节&#xff0c;其重要性不言而喻。然而&#xff0c;许多企业在设备管理内容流程方面仍然使用传统管理办法&#xff0c;这不仅影响了生产效率&#xff0c;也增加了不必要的成本。那…

vuejs路由和组件系统

前端路由原理 createRouter * hash* window.addEventListener(hashChange)* 两种实现路由切换的模式&#xff1a;UI组件&#xff08;router-link&#xff0c;router-view&#xff09;&#xff0c;Api&#xff08;push()方法&#xff09; * history * HTML5新增的API &#xff0…

每日一题(1)

在看一本08年出版的书的时候&#xff0c;看到了这样一个问题&#xff0c;感觉答案很奇怪&#xff1a; public class demo_p22 {public static void main(String args[]){int sCook1,sFish2;//各技能标记character ch1new character();if(ch1.haveSkill(sCook))System.out.print…

【CSP CCF记录】202012-2 期末预测之最佳阈值

题目 过程 思路 第一次没用前缀和&#xff0c;暴力求解得50分。 采用前缀和方法。 1. 对原数组stu[i]进行排序。 2. 计算前缀和数组s[]&#xff0c;s[i]表示安全指数的y_i的前缀和&#xff0c;即安全指数小于等于y_i时的实际挂科情况&#xff0c;y_i之前有多少个未挂科&am…

无线领夹麦克风哪个品牌好?无线麦克风品牌排行榜前十名推荐

​在当今的数字化浪潮中&#xff0c;个人声音的传播和记录变得尤为重要。无论是会议中心、教室讲台还是户外探险&#xff0c;无线领夹麦克风以其卓越的便携性和连接稳定性&#xff0c;成为了人们沟通和表达的首选工具。面对市场上琳琅满目的无线麦克风选择&#xff0c;为了帮助…

Python筑基之旅-MySQL数据库(三)

目录 一、数据库操作 1、创建 1-1、用mysql-connector-python库 1-2、用PyMySQL库 1-3、用PeeWee库 1-4、用SQLAlchemy库 2、删除 2-1、用mysql-connector-python库 2-2、用PyMySQL库 2-3、用PeeWee库 2-4、用SQLAlchemy库 二、数据表操作 1、创建 1-1、用mysql-…

记录Python低代码开发框架zdppy_amcrud的开发过程

实现新增接口 基础代码 import env import mcrud import api import snowflakeenv.load(".env") db mcrud.new_env()table "user" columns ["name", "age"]async def add_user(req):data await api.req.get_json(req)values [d…

SkyEye对接CANoe:助力汽车软件功能验证

01.简介 CANoe&#xff08;CAN open environment&#xff09;是德国Vector公司专为汽车总线设计而开发的一款通用开发环境&#xff0c;作为车载网络和ECU开发、测试和分析的专业工具&#xff0c;支持从需求分析到系统实现的整个系统的开发过程。CANoe丰富的功能和配置选项被OE…

虚拟ECU:彻底改变汽车软件开发与测试

汽车开发领域有着垂直性较强的一系列需求&#xff0c;其中最为瞩目的需求之一就是对安全高效的软件测试方法的需求。传统的汽车开发偏向使用硬件原型与真实ECU进行软件测试&#xff0c;但由于硬件设备往往在开发周期的中后阶段才生产完成&#xff0c;给汽车开发带来了成本与时间…

电商内卷时代,视频号小店凭借一己之力“脱颖而出”

大家好&#xff0c;我是电商笨笨熊 今年618各大电商平台花样百出&#xff1b; 某宝更是直接取消了“预售”&#xff0c;从5月就开始进入618预热期&#xff1b; 不少玩家既开心又难过&#xff0c;市场如此内卷&#xff0c;618确实是个爆发期&#xff0c;但更多的需要不断压低…

Star CCM+分配零部件至区域后交界面丢失-更新找回

前言 在工程应用中&#xff0c;将零部件分配至区域后&#xff0c;一般常规的操作需要对交界面进行检查。偶尔会发现交界面丢失。遇到此类问题&#xff0c;在没有做其他操作前&#xff08;比如画网格&#xff09;&#xff0c;可以选择先删除所有区域在重新分配至区域。若已经进…

基于SSM的大学生兼职管理系统

基于SSM的大学生兼职管理系统的设计与实现~ 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringSpringMVCMyBatis工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 登录界面 企业界面 前台学生界面 管理员界面 摘要 随着大学生兼职市场的日益繁…

K8s 高级调度

文章目录 K8s 高级调度CronJobinitContainerTaint 和 Toleration污点&#xff08;Taint&#xff09;容忍&#xff08;Toleration&#xff09; AffinityNodeAffinityPodAnffinity 和 PodAntiAffinity 总结 K8s 高级调度 CronJob 在 k8s 中周期性运行计划任务&#xff0c;与 li…

【vue echart】完成一个简单echart图表+自适应

实现效果&#xff1a; html&#xff1a; <divref"echartOne"id"echartOne"style"width: 100%; height: 100%" ></div> js: getEchartOne() {let chart this.$echarts.init(this.$refs.echartOne);chart.setOption({title: {text:…

云原生|为什么服务网格能够轻松重塑微服务?一文讲清楚!

目录 一、概述 二、 设计 三、服务网格 四、总结 一、概述 容器化技术与容器编排推动了微服务架构应用的演进&#xff0c;于是应用的扩展与微服务的数量日益增加&#xff0c;新的问题随之而来&#xff0c;监控服务的性能变得越来越困难&#xff0c;微服务与微服务之间相互通…

Kafka-集群管理者(Controller)选举机制、任期(epoch)机制

Kafka概述 Kafka-集群管理者&#xff08;Controller&#xff09;选举机制 Kafka中的Controller是Kafka集群中的一个特殊角色&#xff0c;负责对整个集群进行管理和协调。Controller的主要职责包括分区分配、副本管理、Leader选举等。当当前的Controller节点失效或需要进行重新…

嵌入式实时操作系统笔记1:RTOS入门_理解简单的OS系统

今日开始学习嵌入式实时操作系统RTOS&#xff1a;UCOS-III实时操作系统 本次目标是入门RTOS&#xff0c;理解多任务系统...... 本文只是个人学习笔记&#xff0c;基本都是对网上资料的整合...... 目录 STM32裸机与RTOS区别&#xff1a; 裸机中断示例&#xff1a; RTOS对优先级…

Spring MVC/Web

1.Spring MVC 的介绍 Spring Web MVC是基于Servlet API构建的原始Web框架&#xff0c;也是Spring框架的一部分。它提供了灵活可扩展的MVC架构&#xff0c;方便开发者构建高性能的Web应用程序&#xff0c;并与 Spring 生态系统无缝集成。 2.MVC 设计模式 MVC&#xff08;Model…

设计模式—23种设计模式重点 表格梳理

设计模式的核心在于提供了相关的问题的解决方案&#xff0c;使得人们可以更加简单方便的复用成功的设计和体系结构。 按照设计模式的目的可以分为三大类。创建型模式与对象的创建有关&#xff1b;结构型模式处理类或对象的组合&#xff1b;行为型模式对类或对象怎样交互和怎样…