Python 小抄

Python 备忘单

目录

1.语法和空格
2.注释
3.数字和运算
4.字符串处理
5.列表、元组和字典
6.JSON
7.循环
8.文件处理
9.函数
10.处理日期时间
11.NumPy
12.Pandas

要运行单元格,请按 Shift+Enter 或单击页面顶部的 Run(运行)。

1.语法和空格

Python 使用缩进空格来指示语句的级别。下面的单元格是一个示例,其中 ‘if’ 和 ‘else’ 处于同一级别,而 ‘print’ 由空格分隔到不同级别。相同级别的项目的间距应相同。

student_number = input("Enter your student number:")
if student_number != 0:print("Welcome student {}".format(student_number))
else:print("Try again!")
Enter your student number: 1Welcome student 1

2.注释

在 Python 中,注释以井号 ‘# ’ 开头并延伸至该行的末尾。’# ’ 可以在行的开头或代码之后。

# 这是打印“hello world!”的代码print("Hello world!") # 打印 hello world 语句
print("# 在本例中不是注释")
Hello world!
# 在本例中不是注释

3.数字和运算

与其他编程语言一样,有四种类型的数字:

  • int 表示的整数(例如 1、20、45、1000)
  • float 表示的浮点数(例如 1.25、20.35、1000.00)
  • 长整数
  • 复数(例如 x+2y,其中 x 是已知的)
运算结果
x+yx 与 y 的和
x - yx 与 y 的差
x * yx 与 y 的乘积
x / yx 和 y 的商
x // yx 和 y 的商(取整)
x % yx / y 的余数
abs(x)x 的绝对值
int(x)将 x 转换为整数
long(x)将 x 转换为长整数
float(x)将 x 转换为浮点
pow(x, y)x 的 y 次方
x ** yx 的 y 次方
# 数字示例
a = 5 + 8
print("Sum of int numbers: {} and number format is {}".format(a, type(a)))b = 5 + 2.3
print ("Sum of int and {} and number format is {}".format(b, type(b)))
Sum of int numbers: 13 and number format is <class 'int'>
Sum of int and 7.3 and number format is <class 'float'>

4.字符串处理

与其他编程语言一样,Python 具有丰富的字符串处理功能。

# 将字符串存储在变量中
test_word = "hello world to everyone"# 打印 test_word 值
print(test_word)# 使用 [] 访问字符串的字符。第一个字符由 '0' 表示。
print(test_word[0])# 使用 len() 函数查找字符串的长度
print(len(test_word))# 在字符串中查找的一些示例
print(test_word.count('l')) # 计算 l 在字符串中重复出现的次数
print(test_word.find("o")) # 在字符串中查找字母 'o'。返回第一个匹配项的位置。
print(test_word.count(' ')) # 计算字符串中的空格数
print(test_word.upper()) # 将字符串更改为大写
print(test_word.lower()) # 将字符串更改为小写
print(test_word.replace("everyone","you")) # 将单词“everyone”替换为“you”
print(test_word.title()) # 将字符串更改为标题格式
print(test_word + "!!!") # 连结字符串
print(":".join(test_word)) # 在每个字符之间添加“:”
print("".join(reversed(test_word))) # 将字符串进行反转 
hello world to everyone
h
23
3
4
3
HELLO WORLD TO EVERYONE
hello world to everyone
hello world to you
Hello World To Everyone
hello world to everyone!!!
h:e:l:l:o: :w:o:r:l:d: :t:o: :e:v:e:r:y:o:n:e
enoyreve ot dlrow olleh

5.列表、元组和字典

Python 支持数据类型列表、元组、字典和数组。

列表

通过将所有项目(元素)放在方括号 [ ] 内并以逗号分隔来创建列表。列表可以具有任意数量的项目,并且它们可以具有不同的类型(整数、浮点数、字符串等)。

# Python 列表类似于数组。您也可以创建空列表。my_list = []first_list = [3, 5, 7, 10]
second_list = [1, 'python', 3]
# 嵌套多个列表
nested_list = [first_list, second_list]
nested_list
[[3, 5, 7, 10], [1, 'python', 3]]
# 合并多个列表
combined_list = first_list + second_list
combined_list
[3, 5, 7, 10, 1, 'python', 3]
# 您可以像分割字符串一样分割列表
combined_list[0:3]
[3, 5, 7]
# 将新条目追加到列表
combined_list.append(600)
combined_list
[3, 5, 7, 10, 1, 'python', 3, 600]
# 从列表中删除最后一个条目
combined_list.pop()
600
# 迭代列表
for item in combined_list:print(item)    
3
5
7
10
1
python
3

元组

元组类似于列表,但是您可以将其与括号 ( ) 一起使用,而不是与方括号一起使用。主要区别在于元组不可变,而列表可变。

my_tuple = (1, 2, 3, 4, 5)
my_tuple[1:4]
(2, 3, 4)

字典

字典也称为关联数组。字典由键值对的集合组成。每个键值对将键映射到其关联值。

desk_location = {'jack': 123, 'joe': 234, 'hary': 543}
desk_location['jack']
123

6.JSON

JSON 是用 JavaScript 对象表示法编写的文本。Python 有一个名为 json 的内置程序包,可用于处理 JSON 数据。

import json# 示例 JSON 数据
x = '{"first_name":"Jane", "last_name":"Doe", "age":25, "city":"Chicago"}'# 读取 JSON 数据
y = json.loads(x)# 打印输出结果,类似于字典
print("Employee name is "+ y["first_name"] + " " + y["last_name"])
Employee name is Jane Doe

7.循环

If, Else, ElIf 循环:和其他任何编程语言一样,Python 支持条件语句。Python 依靠缩进(行的开头是空格)来定义代码范围。

a = 22
b = 33
c = 100# if ... else 示例
if a > b:print("a is greater than b")
else:print("b is greater than a")# if .. else .. elif 示例if a > b:print("a is greater than b")
elif b > c:print("b is greater than c")
else:print("b is greater than a and c is greater than b")
b is greater than a
b is greater than a and c is greater than b

While 循环:只要条件为 true,就执行一组语句

# while 示例
i = 1
while i < 10:print("count is " + str(i))i += 1print("="*10)# 如果 x 为 2,则继续进行下一个迭代。最后,条件为 false 时打印消息。x = 0
while x < 5:x += 1if x == 2:continueprint(x)
else:print("x is no longer less than 5")
count is 1
count is 2
count is 3
count is 4
count is 5
count is 6
count is 7
count is 8
count is 9
==========
1
3
4
5
x is no longer less than 5

For 循环: For 循环更像 Python 中的迭代器。For 循环用于遍历序列(列表、元组、字典、集合、字符串或范围)。

# 循环示例
fruits = ["orange", "banana", "apple", "grape", "cherry"]
for fruit in fruits:print(fruit)print("\n")
print("="*10)
print("\n")# 迭代范围
for x in range(1, 10, 2):print(x)
else:print("task complete")print("\n")
print("="*10)
print("\n")# 迭代多个列表
traffic_lights = ["red", "yellow", "green"]
action = ["stop", "slow down", "go"]for light in traffic_lights:for task in action:print(light, task)
orange
banana
apple
grape
cherry

==========

1
3
5
7
9
task complete

==========

red stop
red slow down
red go
yellow stop
yellow slow down
yellow go
green stop
green slow down
green go

8.文件处理

在 Python 中处理文件的主要函数是 open() 函数。open() 函数使用两个参数:filename 和 mode。

打开文件有四种不同的方法(模式):

  • “r” - 读取
  • “a” - 追加
  • “w” - 写入
  • “x” - 创建

此外,您还可以指定是以二进制还是文本模式处理文件。

  • “t” - 文本
  • “b” - 二进制
# 我们来创建一个测试文本文件
!echo "This is a test file with text in it.This is the first line." > test.txt
!echo "This is the second line." >> test.txt
!echo "This is the third line." >> test.txt
# 读取文件
file = open('test.txt', 'r')
print(file.read())
file.close()print("\n")
print("="*10)
print("\n")# 读取文件的前 10 个字符
file = open('test.txt', 'r')
print(file.read(10))
file.close()print("\n")
print("="*10)
print("\n")# 从文件中读取行file = open('test.txt', 'r')
print(file.readline())
file.close()
This is a test file with text in it.This is the first line.
This is the second line.
This is the third line.


==========

This is a 

==========

This is a test file with text in it.This is the first line.
# 创建新文件file = open('test2.txt', 'w')
file.write("This is content in the new test2 file.")
file.close()# 读取新文件的内容
file = open('test2.txt', 'r')
print(file.read())
file.close()
This is content in the new test2 file.
# 更新文件
file = open('test2.txt', 'a')
file.write("\nThis is additional content in the new file.")
file.close()# 读取新文件的内容
file = open('test2.txt', 'r')
print(file.read())
file.close()
This is content in the new test2 file.
This is additional content in the new file.
# 删除文件
import os
file_names = ["test.txt", "test2.txt"]
for item in file_names:if os.path.exists(item):os.remove(item)print(f"File {item} removed successfully!")else:print(f"{item} file does not exist.")
File test.txt removed successfully!
File test2.txt removed successfully!

9.函数

函数是在调用时运行的代码块。您可以将数据或 参数 传递到函数中。在 Python 中,函数是由 def 定义的。

# 定义函数
def new_funct():print("A simple function")# 调用函数
new_funct()
A simple function
# 带有参数的示例函数def param_funct(first_name):print(f"Employee name is {first_name}.")param_funct("Harry")
param_funct("Larry")
param_funct("Shally")
Employee name is Harry.
Employee name is Larry.
Employee name is Shally.

匿名函数 (lambda):lambda 是一个小的匿名函数。Lambda 函数可以使用任意数量的参数,但只有一个表达式。

# lambda 示例
x = lambda y: y + 100
print(x(15))print("\n")
print("="*10)
print("\n")x = lambda a, b: a*b/100
print(x(2,4))
115

==========

0.08

10.处理日期时间

Python 中的 datetime 模块可用于处理日期对象。

import datetimex = datetime.datetime.now()print(x)
print(x.year)
print(x.strftime("%A"))
print(x.strftime("%B"))
print(x.strftime("%d"))
print(x.strftime("%H:%M:%S %p"))
2024-05-15 12:42:35.994638
2024
Wednesday
May
15
12:42:35 PM

11.NumPy

NumPy 是使用 Python 进行科学计算的基本软件包。以下是它包含的一部分内容:

  • 强大的 N 维数组对象
  • 复杂的(广播)函数
  • 集成 C/C++ 和 Fortran 代码的工具
  • 有用的线性代数、傅立叶变换和随机数功能
# 使用 pip 安装 NumPy
!pip install numpy
Requirement already satisfied: numpy in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (1.22.4)
# 导入 NumPy 模块
import numpy as np

检查您的数组

# 创建数组
a = np.arange(15).reshape(3, 5) # 在 3 x 5 维中创建范围为 0-14 的数组
b = np.zeros((3,5)) # 使用 0 创建数组
c = np.ones( (2,3,4), dtype=np.int16 ) # 使用 1 创建数组并定义数据类型
d = np.ones((3,5))
a.shape # 数组维度
(3, 5)
len(b)# 数组长度
3
c.ndim # 数组维度的数量
3
a.size # 数组元素的数量
15
b.dtype # 数组元素的数据类型
dtype('float64')
c.dtype.name # 数据类型的名称
'int16'
c.astype(float) # 将数组类型转换为其他类型
array([[[1., 1., 1., 1.],[1., 1., 1., 1.],[1., 1., 1., 1.]],[[1., 1., 1., 1.],[1., 1., 1., 1.],[1., 1., 1., 1.]]])

基本数学运算

# 创建数组
a = np.arange(15).reshape(3, 5) # 在 3 x 5 维中创建范围为 0-14 的数组
b = np.zeros((3,5)) # 使用 0 创建数组
c = np.ones( (2,3,4), dtype=np.int16 ) # 使用 1 创建数组并定义数据类型
d = np.ones((3,5))
np.add(a,b) # 加法
array([[ 0.,  1.,  2.,  3.,  4.],[ 5.,  6.,  7.,  8.,  9.],[10., 11., 12., 13., 14.]])
np.subtract(a,b) # 减法
array([[ 0.,  1.,  2.,  3.,  4.],[ 5.,  6.,  7.,  8.,  9.],[10., 11., 12., 13., 14.]])
np.divide(a,d) # 除法
array([[ 0.,  1.,  2.,  3.,  4.],[ 5.,  6.,  7.,  8.,  9.],[10., 11., 12., 13., 14.]])
np.multiply(a,d) # 乘法
array([[ 0.,  1.,  2.,  3.,  4.],[ 5.,  6.,  7.,  8.,  9.],[10., 11., 12., 13., 14.]])
np.array_equal(a,b) # 对比 - 数组方式
False

聚合函数

# 创建数组
a = np.arange(15).reshape(3, 5) # 在 3 x 5 维中创建范围为 0-14 的数组
b = np.zeros((3,5)) # 使用 0 创建数组
c = np.ones( (2,3,4), dtype=np.int16 ) # 使用 1 创建数组并定义数据类型
d = np.ones((3,5))
a.sum() # 按数组求和
105
a.min() # 数组最小值
0
a.mean() # 数组平均值
7.0
a.max(axis=0) # 数组行的最大值
array([10, 11, 12, 13, 14])
np.std(a) # 标准差
4.320493798938574

子集、切片和索引

# 创建数组
a = np.arange(15).reshape(3, 5) # 在 3 x 5 维中创建范围为 0-14 的数组
b = np.zeros((3,5)) # 使用 0 创建数组
c = np.ones( (2,3,4), dtype=np.int16 ) # 使用 1 创建数组并定义数据类型
d = np.ones((3,5))
a[1,2] # 选择第 1 行、第 2 列的元素
7
a[0:2] # 选择索引 0 和 1 上的项目
array([[0, 1, 2, 3, 4],[5, 6, 7, 8, 9]])
a[:1] # 选择第 0 行的所有项目
array([[0, 1, 2, 3, 4]])
a[-1:] # 选择最后一行的所有项目
array([[10, 11, 12, 13, 14]])
a[a<2] # 从 'a' 中选择小于 2 的元素
array([0, 1])

数组处理

# 创建数组
a = np.arange(15).reshape(3, 5) # 在 3 x 5 维中创建范围为 0-14 的数组
b = np.zeros((3,5)) # 使用 0 创建数组
c = np.ones( (2,3,4), dtype=np.int16 ) # 使用 1 创建数组并定义数据类型
d = np.ones((3,5))
np.transpose(a) # 转置数组 'a'
array([[ 0,  5, 10],[ 1,  6, 11],[ 2,  7, 12],[ 3,  8, 13],[ 4,  9, 14]])
a.ravel() # 展平数组
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])
a.reshape(5,-2) # 重整但不更改数据
array([[ 0,  1,  2],[ 3,  4,  5],[ 6,  7,  8],[ 9, 10, 11],[12, 13, 14]])
np.append(a,b) # 将项目追加到数组
array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12.,13., 14.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,0.,  0.,  0.,  0.])
np.concatenate((a,d), axis=0) # 连结数组
array([[ 0.,  1.,  2.,  3.,  4.],[ 5.,  6.,  7.,  8.,  9.],[10., 11., 12., 13., 14.],[ 1.,  1.,  1.,  1.,  1.],[ 1.,  1.,  1.,  1.,  1.],[ 1.,  1.,  1.,  1.,  1.]])
np.vsplit(a,3) # 在第 3 个索引处垂直拆分数组
[array([[0, 1, 2, 3, 4]]),array([[5, 6, 7, 8, 9]]),array([[10, 11, 12, 13, 14]])]
np.hsplit(a,5) # 在第 5 个索引处水平拆分数组
[array([[ 0],[ 5],[10]]),array([[ 1],[ 6],[11]]),array([[ 2],[ 7],[12]]),array([[ 3],[ 8],[13]]),array([[ 4],[ 9],[14]])]

Pandas

Pandas 是 BSD 许可的开源代码库,为 Python 编程语言提供了高性能、易于使用的数据结构和数据分析工具。

Pandas DataFrame 是 Python 中复杂数据集合在内存中使用最广泛的表示形式。

# 使用 pip 安装 pandas、xlrd 和 openpyxl
!pip install pandas
!pip install xlrd openpyxl
Requirement already satisfied: pandas in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (2.2.1)
Requirement already satisfied: numpy<2,>=1.22.4 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from pandas) (1.22.4)
Requirement already satisfied: python-dateutil>=2.8.2 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from pandas) (2.9.0)
Requirement already satisfied: pytz>=2020.1 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from pandas) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from pandas) (2024.1)
Requirement already satisfied: six>=1.5 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
Collecting xlrdDownloading xlrd-2.0.1-py2.py3-none-any.whl.metadata (3.4 kB)
Requirement already satisfied: openpyxl in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (3.1.2)
Requirement already satisfied: et-xmlfile in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from openpyxl) (1.1.0)
Downloading xlrd-2.0.1-py2.py3-none-any.whl (96 kB)
[2K   [90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[0m [32m96.5/96.5 kB[0m [31m11.2 MB/s[0m eta [36m0:00:00[0m
[?25hInstalling collected packages: xlrd
Successfully installed xlrd-2.0.1
# 导入 NumPy 和 Pandas 模块
import numpy as np
import pandas as pd
# 示例 dataframe df
df = pd.DataFrame({'num_legs': [2, 4, np.nan, 0],'num_wings': [2, 0, 0, 0],'num_specimen_seen': [10, np.nan, 1, 8]},index=['falcon', 'dog', 'spider', 'fish'])
df # 显示 dataframe df
num_legsnum_wingsnum_specimen_seen
falcon2.0210.0
dog4.00NaN
spiderNaN01.0
fish0.008.0
# 另一个示例 dataframe df1 - 使用带有日期时间索引和标记列的 NumPy 数组
df1 = pd.date_range('20130101', periods=6)
df1 = pd.DataFrame(np.random.randn(6, 4), index=df1, columns=list('ABCD'))
df1 # 显示 dataframe df1
ABCD
2013-01-010.4550052.0472800.260058-1.068430
2013-01-02-1.9038300.5212490.9067782.358446
2013-01-030.0362780.237705-0.836402-0.142862
2013-01-041.3021992.130269-0.467286-0.739326
2013-01-050.9240340.4136901.122296-1.917679
2013-01-06-1.4280251.2772790.1646011.313498

查看数据

df1 = pd.date_range('20130101', periods=6)
df1 = pd.DataFrame(np.random.randn(6, 4), index=df1, columns=list('ABCD'))
df1.head(2) # 查看顶部数据
ABCD
2013-01-010.9101310.8570311.3243970.768240
2013-01-02-1.1937120.598527-0.654860-1.528201
df1.tail(2) # 查看底部数据
ABCD
2013-01-051.009387-0.695923-1.2542390.374314
2013-01-06-0.6226980.9595860.3512941.240811
df1.index # 显示索引列
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04','2013-01-05', '2013-01-06'],dtype='datetime64[ns]', freq='D')
df1.dtypes # 检查数据类型
A    float64
B    float64
C    float64
D    float64
dtype: object
df1.describe() # 显示数据的快速统计摘要
ABCD
count6.0000006.0000006.0000006.000000
mean-0.4321930.637821-0.1580000.080423
std1.1517990.7699160.9053030.973543
min-1.827255-0.695923-1.254239-1.528201
25%-1.1125370.500875-0.639878-0.299781
50%-0.7458560.727779-0.3572960.207468
75%0.5269240.9339480.2335540.669758
max1.0093871.6393821.3243971.240811

子集、切片和索引

df1 = pd.date_range('20130101', periods=6)
df1 = pd.DataFrame(np.random.randn(6, 4), index=df1, columns=list('ABCD'))
df1.T # 置换数据
2013-01-012013-01-022013-01-032013-01-042013-01-052013-01-06
A0.339706-0.033353-0.4699120.683896-0.119535-0.391874
B-1.2711341.1608610.594625-0.355716-1.718980-1.546150
C0.6312700.5258600.173641-1.885387-2.915834-0.781985
D0.674431-0.2748300.6303071.1326420.0216961.299410
df1.sort_index(axis=1, ascending=False) # 按轴排序
DCBA
2013-01-010.6744310.631270-1.2711340.339706
2013-01-02-0.2748300.5258601.160861-0.033353
2013-01-030.6303070.1736410.594625-0.469912
2013-01-041.132642-1.885387-0.3557160.683896
2013-01-050.021696-2.915834-1.718980-0.119535
2013-01-061.299410-0.781985-1.546150-0.391874
df1.sort_values(by='B') # 按值排序
ABCD
2013-01-05-0.119535-1.718980-2.9158340.021696
2013-01-06-0.391874-1.546150-0.7819851.299410
2013-01-010.339706-1.2711340.6312700.674431
2013-01-040.683896-0.355716-1.8853871.132642
2013-01-03-0.4699120.5946250.1736410.630307
2013-01-02-0.0333531.1608610.525860-0.274830
df1['A'] # 选择列 A
2013-01-01    0.339706
2013-01-02   -0.033353
2013-01-03   -0.469912
2013-01-04    0.683896
2013-01-05   -0.119535
2013-01-06   -0.391874
Freq: D, Name: A, dtype: float64
df1[0:3] # 选择索引 0 到 2
ABCD
2013-01-010.339706-1.2711340.6312700.674431
2013-01-02-0.0333531.1608610.525860-0.274830
2013-01-03-0.4699120.5946250.1736410.630307
df1['20130102':'20130104'] # 从匹配值的索引中选择
ABCD
2013-01-02-0.0333531.1608610.525860-0.274830
2013-01-03-0.4699120.5946250.1736410.630307
2013-01-040.683896-0.355716-1.8853871.132642
df1.loc[:, ['A', 'B']] # 通过标签在多轴上选择
AB
2013-01-010.339706-1.271134
2013-01-02-0.0333531.160861
2013-01-03-0.4699120.594625
2013-01-040.683896-0.355716
2013-01-05-0.119535-1.718980
2013-01-06-0.391874-1.546150
df1.iloc[3] # 通过传递的整数的位置进行选择
A    0.683896
B   -0.355716
C   -1.885387
D    1.132642
Name: 2013-01-04 00:00:00, dtype: float64
df1[df1 > 0] # 从满足布尔运算条件的 DataFrame 中选择值
ABCD
2013-01-010.339706NaN0.6312700.674431
2013-01-02NaN1.1608610.525860NaN
2013-01-03NaN0.5946250.1736410.630307
2013-01-040.683896NaNNaN1.132642
2013-01-05NaNNaNNaN0.021696
2013-01-06NaNNaNNaN1.299410
df2 = df1.copy() # 将 df1 数据集复制到 df2
df2['E'] = ['one', 'one', 'two', 'three', 'four', 'three'] # 添加带有值的 E 列
df2[df2['E'].isin(['two', 'four'])] # 使用 isin 方法进行筛选
ABCDE
2013-01-03-0.4699120.5946250.1736410.630307two
2013-01-05-0.119535-1.718980-2.9158340.021696four

数据缺失

Pandas 主要使用值 np.nan 来表示缺失数据。默认情况下,它不包括在计算中。

df = pd.DataFrame({'num_legs': [2, 4, np.nan, 0],'num_wings': [2, 0, 0, 0],'num_specimen_seen': [10, np.nan, 1, 8]},index=['falcon', 'dog', 'spider', 'fish'])
df.dropna(how='any') # 删除所有缺失数据的行
num_legsnum_wingsnum_specimen_seen
falcon2.0210.0
fish0.008.0
df.dropna(how='any', axis=1) # 删除所有缺失数据的列
num_wings
falcon2
dog0
spider0
fish0
df.fillna(value=5) # 用值 5 填充缺失的数据
num_legsnum_wingsnum_specimen_seen
falcon2.0210.0
dog4.005.0
spider5.001.0
fish0.008.0
pd.isna(df) # 在缺失数据的位置获取布尔掩码
num_legsnum_wingsnum_specimen_seen
falconFalseFalseFalse
dogFalseFalseTrue
spiderTrueFalseFalse
fishFalseFalseFalse

文件处理

df = pd.DataFrame({'num_legs': [2, 4, np.nan, 0],'num_wings': [2, 0, 0, 0],'num_specimen_seen': [10, np.nan, 1, 8]},index=['falcon', 'dog', 'spider', 'fish'])
df.to_csv('foo.csv') # 写入 CSV 文件
pd.read_csv('foo.csv') # 从 CSV 文件中读取
Unnamed: 0num_legsnum_wingsnum_specimen_seen
0falcon2.0210.0
1dog4.00NaN
2spiderNaN01.0
3fish0.008.0
df.to_excel('foo.xlsx', sheet_name='Sheet1') # 写入 Microsoft Excel 文件
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA']) # 从 Microsoft Excel 文件中读取
Unnamed: 0num_legsnum_wingsnum_specimen_seen
0falcon2.0210.0
1dog4.00NaN
2spiderNaN01.0
3fish0.008.0

绘图

# 使用 pip 安装 Matplotlib
!pip install matplotlib
Requirement already satisfied: matplotlib in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (3.8.3)
Requirement already satisfied: contourpy>=1.0.1 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from matplotlib) (1.2.0)
Requirement already satisfied: cycler>=0.10 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from matplotlib) (4.50.0)
Requirement already satisfied: kiwisolver>=1.3.1 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from matplotlib) (1.4.5)
Requirement already satisfied: numpy<2,>=1.21 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from matplotlib) (1.22.4)
Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from matplotlib) (21.3)
Requirement already satisfied: pillow>=8 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from matplotlib) (10.2.0)
Requirement already satisfied: pyparsing>=2.3.1 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from matplotlib) (3.1.2)
Requirement already satisfied: python-dateutil>=2.7 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from matplotlib) (2.9.0)
Requirement already satisfied: six>=1.5 in /home/ec2-user/anaconda3/envs/python3/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)
from matplotlib import pyplot as plt # 导入 Matplotlib 模块
# 生成随机时间序列数据
ts = pd.Series(np.random.randn(1000),index=pd.date_range('1/1/2000', periods=1000)) 
ts.head()
2000-01-01    0.273730
2000-01-02    0.934832
2000-01-03   -0.142245
2000-01-04   -0.499136
2000-01-05    0.169899
Freq: D, dtype: float64
ts = ts.cumsum()
ts.plot() # 绘制图表
plt.show()


请添加图片描述

# 在 DataFrame 上,plot() 方法可以方便绘制带有标签的所有列
df4 = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,columns=['A', 'B', 'C', 'D'])
df4 = df4.cumsum()
df4.head()
ABCD
2000-01-01-0.8477551.239531-0.7608560.668182
2000-01-02-1.1910671.930612-2.5876670.075473
2000-01-03-1.3537041.815771-1.788468-2.039681
2000-01-04-2.3381591.734058-2.269514-0.756332
2000-01-05-2.8355702.067088-3.3963661.352672
df4.plot()
plt.show()


请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/13195.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

6---Linux下版本控制器Git的知识点

一、Linux之父与Git的故事&#xff1a; Linux之父叫做“Linus Torvalds”&#xff0c;我们简称为雷纳斯。Linux是开源项目&#xff0c;所以在Linux的早期开发中&#xff0c;许多世界各地的能力各异的程序员都参与到Linux的项目开发中。那时&#xff0c;雷纳斯每天都会收到许许…

VMware Fusion 13.5.2 for Mac 发布,产品订阅模式首个重大变更

VMware Fusion 13.5.2 for Mac 发布&#xff0c;产品订阅模式首个重大变更 适用于基于 Intel 处理器和搭载 Apple 芯片的 Mac 的桌面虚拟化软件 请访问原文链接&#xff1a;https://sysin.org/blog/vmware-fusion-13/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留…

文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《集装箱海港级联物流-能源耦合系统协同优化方法 》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

FPGA - GTX收发器-K码 以及 IBERT IP核使用

一&#xff0c;前言 在FPGA - Xilinx系列高速收发器---GTX中详细介绍了GTX的基础知识&#xff0c;以及IP核的调用&#xff0c;下面将补充一下GTX在使用中的高速串行数据流在接收和发送时的控制与对齐&#xff08;K码&#xff09;&#xff0c;以及高速接口GTX&#xff0c;如果G…

Springboot开发 -- Postman 调试 session 验证 接口

当我们在开发Spring Boot应用时&#xff0c;经常会遇到带有Session验证的接口&#xff0c;这些接口需要用户先登录并获取到Session ID&#xff08;或称为cookie中的JSESSIONID&#xff09;&#xff0c;然后在后续的请求中携带这个Session ID来保持会话状态。下面我将以一个实际…

Hello, GPT-4o!

2024年5月13日&#xff0c;OpenAI 在官网正式发布了最新的旗舰模型 GPT-4o 它是一个 多模态模型&#xff0c;可以实时推理音频、视频和文本。 * 发布会完整版视频回顾&#xff1a;https://www.youtube.com/watch?vDQacCB9tDaw GPT-4o&#xff08;“o”代表“omni”&#xff0c…

高效协同,智慧绘制:革新型流程图工具全解析

流程图&#xff0c;作为一种直观展示工作过程和系统运作的工具&#xff0c;在现代办公和项目管理中发挥着不可或缺的作用。 其优势在于能够清晰、直观地呈现复杂的过程和关系&#xff0c;帮助人们快速理解并掌握关键信息。同时&#xff0c;流程图也广泛应用于各种场景&#xf…

【Python】图像批量合成视频,并以文件夹名称命名合成的视频

一个文件夹中有多个子文件夹&#xff0c;子文件夹中有多张图像。如何把批量把子文件夹中的图像合成视频&#xff0c;视频名称是子文件夹的名称&#xff0c;生成的视频保存到指定文件夹&#xff0c;效果记录。 代码 import os import cv2def create_video_from_images(image_f…

leetcode刷题(6):二叉树的使用

文章目录 104. 二叉树的最大深度解题思路c 实现 94. 二叉树的中序遍历解题思路c 实现 101. 对称二叉树解题思路c 实现 96. 不同的二叉搜索树解题思路c 实现 102. 二叉树的层序遍历解题思路c 实现 104. 二叉树的最大深度 题目: 给定一个二叉树 root &#xff0c;返回其最大深度…

ALV 图标显示

前言 在ABAP ALV中&#xff0c;使用fieldcat来定义列表中每个字段的显示属性&#xff0c;包括图标&#xff08;Icon&#xff09;的显示。图标可以在ALV列表中为特定列的行或标题添加图形元素&#xff0c;以增强视觉提示或传达附加信息。 ICON查询 图标的名称用事务码”ICON“进…

智能BI(后端)-- 系统异步化

文章目录 系统问题分析什么是异步化&#xff1f;业务流程分析标准异步化的业务流程系统业务流程 线程池为什么需要线程池&#xff1f;线程池两种实现方式线程池的参数线程池的开发 项目异步化改造 系统问题分析 问题场景&#xff1a;调用的服务能力有限&#xff0c;或者接口的…

【文档理解】TextMonkey:一种OCR-Free的用于文档理解的多模态大模型

背景 传统的信息提取&#xff0c;通常是从文本中提取信息&#xff0c;相关技术也比较成熟。然而对于复杂领域&#xff0c;例如图片&#xff0c;文档等形式的数据&#xff0c;想要提取出高质量的、可信的数据难度就比较大了&#xff0c;这种任务也常称为&#xff1a;视觉文档理…

CTF网络安全大赛web题目:just_sqli

这道题目是bugku的web题目 题目的 描  述: KosenCTF{} 原文链接&#xff1a; CTF网络安全大赛web题目&#xff1a;just_sqli - 红客网-网络安全与渗透技术 题目Web源代码&#xff1a; <?php$user NULL; $is_admin 0;if (isset($_GET["source"])) {highlig…

齐护K210系列教程(二十七)_语音识别

语音识别 1.烧录固件和模型2.语音识别程序2.1训练并识别2.2使用本地文件语音识别 3.课程资源联系我们 1.烧录固件和模型 注&#xff1a;本应用只适用于有麦克风功能的型号&#xff1a;AIstart_pro、AIstart_掌机、AIstart_Mini, 其它型号不支持&#xff01; 机器码生成以及模…

linux中远程服务器上传输文件的10个sftp命令示例

目录 1. 如何连接到 SFTP 2. 帮助 3.检查当前工作目录 4. 使用 sftp 列出文件 远程 本地 5. 使用 sftp 上传文件 6. 使用 sftp 上传多个文件 7. 使用 sftp 下载文件 8. 在 sftp 中切换目录 远程 本地 9. 使用 sftp 创建目录 10. 使用 sftp 删除目录 11. 退出 sf…

(001)apidoc 的安装

安装 1.确定 node 和 npm 的匹配版本 node -vv10.14.1# 切换node 版本 nvm list nvm use 20.12.22.安装 apidoc。 npm install -g apidoc3.生成文档&#xff1a; apidoc -i ../ -o document/ -f ".java$"-i &#xff1a;指定扫描路径。-o&#xff1a;输出目录。…

【Linux:环境变量】

环境变量一般是指在操作系统中用来指定操作系统环境的一些参数 常见的环境变量&#xff1a; PATH 指定可执行程序的搜索路径 系统级的文件&#xff1a;/etc/bashrc 用户级文件&#xff1a;~/.bashrc ~/.bash_profile HOME 指定用户的主要工作目录&#xff08;当前用…

kettle从入门到精通 第六十一课 ETL之kettle 任务调度器,轻松使用xxl-job调用kettle中的job和trans

想真正学习或者提升自己的ETL领域知识的朋友欢迎进群&#xff0c;一起学习&#xff0c;共同进步。若二维码失效&#xff0c;公众号后台加我微信入群&#xff0c;备注kettle。 1、大家都知道kettle设计的job流程文件有个缺点&#xff1a;只能设置简单的定时任务&#xff0c;无法…

数据库-索引(高级篇)

文章目录 索引概念&#xff1f;索引演示&#xff1f;索引的优劣&#xff1f;为什么使用索引就快&#xff1f;本篇小结 更多相关内容可查看 索引概念&#xff1f; 索引&#xff08;index&#xff09;是帮助MySQL高效获取数据的数据结构(有序)。在数据之外&#xff0c;数据库系统…

语法分析-文法

如果对于一部文法中&#xff0c;存在至少一个句子有两个或者两个以上的语法树则该文法是二义性的。 我们可以以上面的例子进行解释&#xff0c;对于第棵个语法树&#xff0c;我们可以看到是先进行了加法运算再进行的乘法运算&#xff0c;因为需要先把EE作为整体运算完后再成为E…