二进制搭建k8s

实验环境:

k8s集群master01:192.168.1.11

k8s集群master02:192.168.1.22

master虚拟ip:192.168.1.100

k8s集群node01:192.168.1.33

k8s集群node01:192.168.1.44

nginx+keepalive01(master):192.168.1.55

nginx+keepalive02(backup):192.168.1.66

在所有机器上初始化系统:

systemctl stop firewalld
systemctl disable firewalld
iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X#关闭selinux
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config#关闭swap
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab #分别设置主机名
hostnamectl set-hostname master01
hostnamectl set-hostname master02
hostnamectl set-hostname node01
hostnamectl set-hostname node02#添加hosts文件
cat >> /etc/hosts << EOF
192.168.1.11 master01
192.168.1.22 master02
192.168.1.33 node01
192.168.1.44 node02
EOF#调整内核参数
cat > /etc/sysctl.d/k8s.conf << EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv6.conf.all.disable_ipv6=1
net.ipv4.ip_forward=1
EOF
#开启网桥模式,可将网桥的流量传递给iptables链
#关闭ipv6协议
sysctl --system#时间同步
yum install ntpdate -y
ntpdate time.windows.com

在所有node节点部署docker:

yum install -y yum-utils device-mapper-persistent-data lvm2 
yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 
yum install -y docker-ce docker-ce-cli containerd.io
systemctl start docker.service
systemctl enable docker.service 

部署etcd集群:

准备cfssl证书生成工具cfssl、cfssljson、cfssl-certinfo放在master01上的/usr/local/bin/下并赋予执行权限

wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfo
chmod +x /usr/local/bin/cfssl*

创建/opt/k8s/目录并使用脚本生成CA证书、etcd服务器证书以及私钥

mkdir /opt/k8s
cd /opt/k8s/
chmod +x etcd-cert.sh etcd.sh
mkdir /opt/k8s/etcd-cert
mv etcd-cert.sh etcd-cert/
cd /opt/k8s/etcd-cert/
./etcd-cert.sh

etcd-cert.sh脚本:

#!/bin/bash# 配置证书生成策略
cat > ca-config.json <<EOF
{"signing": {"default": {"expiry": "87600h"},"profiles": {"www": {"expiry": "87600h","usages": ["signing","key encipherment","server auth","client auth"]}}}
}
EOF# 生成根证书的请求文件
cat > ca-csr.json <<EOF
{"CN": "etcd","key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "Beijing","ST": "Beijing"}]
}
EOF# 使用 CSR 文件生成根证书和私钥
cfssl gencert -initca ca-csr.json | cfssljson -bare ca# 生成服务器证书的请求文件
cat > server-csr.json <<EOF
{"CN": "etcd","hosts": ["192.168.1.11","192.168.1.33","192.168.1.44"],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "BeiJing","ST": "BeiJing"}]
}
EOF# 使用根证书签发服务器证书和私钥
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=www server-csr.json | cfssljson -bare server

上传etcd-v3.4.9-linux-amd64.tar.gz 到/opt/k8s/后启动etcd服务

cd /opt/k8s/
tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
mkdir -p /opt/etcd/{cfg,bin,ssl}
cd /opt/k8s/etcd-v3.4.9-linux-amd64/
mv etcd etcdctl /opt/etcd/bin/
cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/
cd /opt/k8s/
./etcd.sh etcd01 192.168.1.11 etcd02=https://192.168.1.33:2380,etcd03=https://192.168.1.44:2380

把etcd相关证书文件、命令文件和服务管理文件全部拷贝到另外两个etcd集群节点

scp -r /opt/etcd/ root@192.168.1.33:/opt/
scp -r /opt/etcd/ root@192.168.1.44:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.1.33:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.1.44:/usr/lib/systemd/system/

在node节点分别修改etcd配置文件并启动etcd

vim /opt/etcd/cfg/etcd
systemctl start etcd
systemctl enable etcd 
systemctl status etcd

检查etcd集群状态

ETCDCTL_API=3   /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.1.11:2379,https://192.168.1.33:2379,https://192.168.1.44:2379" endpoint health --write-out=table

这个命令用于检查 etcd 集群中各个节点的健康状态,并以表格形式输出。

  • ETCDCTL_API=3:设置 etcdctl 的 API 版本为 3。
  • /opt/etcd/bin/etcdctl:指定 etcdctl 的路径。
  • --cacert=/opt/etcd/ssl/ca.pem:指定根证书文件的路径,用于验证 etcd 服务器证书的有效性。
  • --cert=/opt/etcd/ssl/server.pem:指定客户端证书的路径,用于与 etcd 服务器进行双向身份验证。
  • --key=/opt/etcd/ssl/server-key.pem:指定客户端私钥的路径,用于与 etcd 服务器进行双向身份验证。
  • --endpoints="https://192.168.1.11:2379,https://192.168.1.33:2379,https://192.168.1.44:2379":指定 etcd 集群的各个节点的地址和端口。
  • endpoint health:检查 etcd 集群中各个节点的健康状态。
  • --write-out=table:以表格形式输出结果。
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.1.11:2379,https://192.168.1.33:2379,https://192.168.1.44:2379" endpoint status --write-out=table

这个命令用于获取 etcd 集群中各个节点的状态,并以表格形式输出。

  • ETCDCTL_API=3:设置 etcdctl 的 API 版本为 3。
  • /opt/etcd/bin/etcdctl:指定 etcdctl 的路径。
  • --cacert=/opt/etcd/ssl/ca.pem:指定根证书文件的路径,用于验证 etcd 服务器证书的有效性。
  • --cert=/opt/etcd/ssl/server.pem:指定客户端证书的路径,用于与 etcd 服务器进行双向身份验证。
  • --key=/opt/etcd/ssl/server-key.pem:指定客户端私钥的路径,用于与 etcd 服务器进行双向身份验证。
  • --endpoints="https://192.168.1.11:2379,https://192.168.1.33:2379,https://192.168.1.44:2379":指定 etcd 集群的各个节点的地址和端口。
  • endpoint status:获取 etcd 集群中各个节点的状态。
  • --write-out=table:以表格形式输出结果。
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.1.11:2379,https://192.168.1.33:2379,https://192.168.1.44:2379" --write-out=table member list

这个命令用于列出 etcd 集群中的成员,并以表格形式输出。

  • ETCDCTL_API=3:设置 etcdctl 的 API 版本为 3。
  • /opt/etcd/bin/etcdctl:指定 etcdctl 的路径。
  • --cacert=/opt/etcd/ssl/ca.pem:指定根证书文件的路径,用于验证 etcd 服务器证书的有效性。
  • --cert=/opt/etcd/ssl/server.pem:指定客户端证书的路径,用于与 etcd 服务器进行双向身份验证。
  • --key=/opt/etcd/ssl/server-key.pem:指定客户端私钥的路径,用于与 etcd 服务器进行双向身份验证。
  • --endpoints="https://192.168.1.11:2379,https://192.168.1.33:2379,https://192.168.1.44:2379":指定 etcd 集群的各个节点的地址和端口。
  • member list:列出 etcd 集群中的成员。
  • --write-out=table:以表格形式输出结果。

部署master:

在/opt/k8s/目录中准备admin.sh、apiserver.sh、controller-manager.sh、scheduler.sh、k8s-sert.sh,kubernetes-server-linux-amd64.tar.gz

admin.sh

#!/bin/bash
mkdir /root/.kube
KUBE_CONFIG="/root/.kube/config"
KUBE_APISERVER="https://192.168.1.11:6443"cd /opt/k8s/k8s-cert/kubectl config set-cluster kubernetes \--certificate-authority=/opt/kubernetes/ssl/ca.pem \--embed-certs=true \--server=${KUBE_APISERVER} \--kubeconfig=${KUBE_CONFIG}
kubectl config set-credentials cluster-admin \--client-certificate=./admin.pem \--client-key=./admin-key.pem \--embed-certs=true \--kubeconfig=${KUBE_CONFIG}
kubectl config set-context default \--cluster=kubernetes \--user=cluster-admin \--kubeconfig=${KUBE_CONFIG}
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}

apiserver.sh

#!/bin/bash
#example: apiserver.sh your_master_ip https://your_etcd01_ip:2379,https://your_etcd02_ip:2379,https://your_etcd03_ip:2379
#创建 kube-apiserver 启动参数配置文件
MASTER_ADDRESS=$1
ETCD_SERVERS=$2cat >/opt/kubernetes/cfg/kube-apiserver <<EOF
KUBE_APISERVER_OPTS="--logtostderr=false  \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--etcd-servers=${ETCD_SERVERS} \\
--bind-address=${MASTER_ADDRESS} \\
--secure-port=6443 \\
--advertise-address=${MASTER_ADDRESS} \\
--allow-privileged=true \\
--service-cluster-ip-range=10.0.0.0/24 \\
--enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,ResourceQuota,NodeRestriction \\
--authorization-mode=RBAC,Node \\
--enable-bootstrap-token-auth=true \\
--token-auth-file=/opt/kubernetes/cfg/token.csv \\
--service-node-port-range=30000-50000 \\
--kubelet-client-certificate=/opt/kubernetes/ssl/apiserver.pem \\
--kubelet-client-key=/opt/kubernetes/ssl/apiserver-key.pem \\
--tls-cert-file=/opt/kubernetes/ssl/apiserver.pem  \\
--tls-private-key-file=/opt/kubernetes/ssl/apiserver-key.pem \\
--client-ca-file=/opt/kubernetes/ssl/ca.pem \\
--service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \\
--service-account-issuer=api \\
--service-account-signing-key-file=/opt/kubernetes/ssl/apiserver-key.pem \\
--etcd-cafile=/opt/etcd/ssl/ca.pem \\
--etcd-certfile=/opt/etcd/ssl/server.pem \\
--etcd-keyfile=/opt/etcd/ssl/server-key.pem \\
--requestheader-client-ca-file=/opt/kubernetes/ssl/ca.pem \\
--proxy-client-cert-file=/opt/kubernetes/ssl/apiserver.pem \\
--proxy-client-key-file=/opt/kubernetes/ssl/apiserver-key.pem \\
--requestheader-allowed-names=kubernetes \\
--requestheader-extra-headers-prefix=X-Remote-Extra- \\
--requestheader-group-headers=X-Remote-Group \\
--requestheader-username-headers=X-Remote-User \\
--enable-aggregator-routing=true \\
--audit-log-maxage=30 \\
--audit-log-maxbackup=3 \\
--audit-log-maxsize=100 \\
--audit-log-path=/opt/kubernetes/logs/k8s-audit.log"
EOF#--logtostderr=true:启用日志。输出日志到标准错误控制台,不输出到文件
#--v=4:日志等级。指定输出日志的级别,v=4为调试级别详细输出
#--etcd-servers:etcd集群地址。指定etcd服务器列表(格式://ip:port),逗号分隔
#--bind-address:监听地址。指定 HTTPS 安全接口的监听地址,默认值0.0.0.0
#--secure-port:https安全端口。指定 HTTPS 安全接口的监听端口,默认值6443
#--advertise-address:集群通告地址。通过该 ip 地址向集群其他节点公布 api server 的信息,必须能够被其他节点访问
#--allow-privileged=true:启用授权。允许拥有系统特权的容器运行,默认值false
#--service-cluster-ip-range:Service虚拟IP地址段。指定 Service Cluster IP 地址段
#--enable-admission-plugins:准入控制模块。kuberneres集群的准入控制机制,各控制模块以插件的形式依次生效,集群时必须包含ServiceAccount,运行在认证(Authentication)、授权(Authorization)之后,Admission Control是权限认证链上的最后一环, 对请求API资源对象进行修改和校验
#--authorization-mode:认证授权,启用RBAC授权和节点自管理。在安全端口使用RBAC,Node授权模式,未通过授权的请求拒绝,默认值AlwaysAllow。RBAC是用户通过角色与权限进行关联的模式;Node模式(节点授权)是一种特殊用途的授权模式,专门授权由kubelet发出的API请求,在进行认证时,先通过用户名、用户分组验证是否是集群中的Node节点,只有是Node节点的请求才能使用Node模式授权
#--enable-bootstrap-token-auth:启用TLS bootstrap机制。在apiserver上启用Bootstrap Token 认证
#--token-auth-file=/opt/kubernetes/cfg/token.csv:指定bootstrap token认证文件路径
#--service-node-port-range:指定 Service  NodePort 的端口范围,默认值30000-32767
#–-kubelet-client-xxx:apiserver访问kubelet客户端证书
#--tls-xxx-file:apiserver https证书
#1.20版本必须加的参数:–-service-account-issuer,–-service-account-signing-key-file
#--etcd-xxxfile:连接Etcd集群证书
#–-audit-log-xxx:审计日志
#启动聚合层相关配置:–requestheader-client-ca-file,–proxy-client-cert-file,–proxy-client-key-file,–requestheader-allowed-names,–requestheader-extra-headers-prefix,–requestheader-group-headers,–requestheader-username-headers,–enable-aggregator-routing#创建 kube-apiserver.service 服务管理文件
cat >/usr/lib/systemd/system/kube-apiserver.service <<EOF
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-apiserver
ExecStart=/opt/kubernetes/bin/kube-apiserver \$KUBE_APISERVER_OPTS
Restart=on-failure[Install]
WantedBy=multi-user.target
EOFsystemctl daemon-reload
systemctl enable kube-apiserver
systemctl restart kube-apiserver

controller-manager.sh

#!/bin/bash
##创建 kube-controller-manager 启动参数配置文件
MASTER_ADDRESS=$1cat >/opt/kubernetes/cfg/kube-controller-manager <<EOF
KUBE_CONTROLLER_MANAGER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--leader-elect=true \\
--kubeconfig=/opt/kubernetes/cfg/kube-controller-manager.kubeconfig \\
--bind-address=127.0.0.1 \\
--allocate-node-cidrs=true \\
--cluster-cidr=10.244.0.0/16 \\
--service-cluster-ip-range=10.0.0.0/24 \\
--cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem \\
--cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem  \\
--root-ca-file=/opt/kubernetes/ssl/ca.pem \\
--service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem \\
--cluster-signing-duration=87600h0m0s"
EOF#––leader-elect:当该组件启动多个时,自动选举(HA)
#-–kubeconfig:连接 apiserver 用的配置文件,用于识别 k8s 集群
#--cluster-cidr=10.244.0.0/16:pod资源的网段,需与pod网络插件的值设置一致。通常,Flannel网络插件的默认为10.244.0.0/16,Calico插件的默认值为192.168.0.0/16
#--cluster-signing-cert-file/–-cluster-signing-key-file:自动为kubelet颁发证书的CA,与apiserver保持一致。指定签名的CA机构根证书,用来签名为 TLS BootStrapping 创建的证书和私钥
#--root-ca-file:指定根CA证书文件路径,用来对 kube-apiserver 证书进行校验,指定该参数后,才会在 Pod 容器的 ServiceAccount 中放置该 CA 证书文件
#--experimental-cluster-signing-duration:设置为 TLS BootStrapping 签署的证书有效时间为10年,默认为1年##生成kube-controller-manager证书
cd /opt/k8s/k8s-cert/
#创建证书请求文件
cat > kube-controller-manager-csr.json << EOF
{"CN": "system:kube-controller-manager","hosts": [],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "BeiJing", "ST": "BeiJing","O": "system:masters","OU": "System"}]
}
EOF#生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-controller-manager-csr.json | cfssljson -bare kube-controller-manager#生成kubeconfig文件
KUBE_CONFIG="/opt/kubernetes/cfg/kube-controller-manager.kubeconfig"
KUBE_APISERVER="https://192.168.1.11:6443"kubectl config set-cluster kubernetes \--certificate-authority=/opt/kubernetes/ssl/ca.pem \--embed-certs=true \--server=${KUBE_APISERVER} \--kubeconfig=${KUBE_CONFIG}
kubectl config set-credentials kube-controller-manager \--client-certificate=./kube-controller-manager.pem \--client-key=./kube-controller-manager-key.pem \--embed-certs=true \--kubeconfig=${KUBE_CONFIG}
kubectl config set-context default \--cluster=kubernetes \--user=kube-controller-manager \--kubeconfig=${KUBE_CONFIG}
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}##创建 kube-controller-manager.service 服务管理文件
cat >/usr/lib/systemd/system/kube-controller-manager.service <<EOF
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-controller-manager
ExecStart=/opt/kubernetes/bin/kube-controller-manager \$KUBE_CONTROLLER_MANAGER_OPTS
Restart=on-failure[Install]
WantedBy=multi-user.target
EOFsystemctl daemon-reload
systemctl enable kube-controller-manager
systemctl restart kube-controller-manager

scheduler.sh

#!/bin/bash
##创建 kube-scheduler 启动参数配置文件
MASTER_ADDRESS=$1cat >/opt/kubernetes/cfg/kube-scheduler <<EOF
KUBE_SCHEDULER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--leader-elect=true \\
--kubeconfig=/opt/kubernetes/cfg/kube-scheduler.kubeconfig \\
--bind-address=127.0.0.1"
EOF#-–kubeconfig:连接 apiserver 用的配置文件,用于识别 k8s 集群
#--leader-elect=true:当该组件启动多个时,自动启动 leader 选举
#k8s中Controller-Manager和Scheduler的选主逻辑:k8s中的etcd是整个集群所有状态信息的存储,涉及数据的读写和多个etcd之间数据的同步,对数据的一致性要求严格,所以使用较复杂的 raft 算法来选择用于提交数据的主节点。而 apiserver 作为集群入口,本身是无状态的web服务器,多个 apiserver 服务之间直接负载请求并不需要做选主。Controller-Manager 和 Scheduler 作为任务类型的组件,比如 controller-manager 内置的 k8s 各种资源对象的控制器实时的 watch apiserver 获取对象最新的变化事件做期望状态和实际状态调整,调度器watch未绑定节点的pod做节点选择,显然多个这些任务同时工作是完全没有必要的,所以 controller-manager 和 scheduler 也是需要选主的,但是选主逻辑和 etcd 不一样的,这里只需要保证从多个 controller-manager 和 scheduler 之间选出一个 leader 进入工作状态即可,而无需考虑它们之间的数据一致和同步。##生成kube-scheduler证书
cd /opt/k8s/k8s-cert/
#创建证书请求文件
cat > kube-scheduler-csr.json << EOF
{"CN": "system:kube-scheduler","hosts": [],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "BeiJing","ST": "BeiJing","O": "system:masters","OU": "System"}]
}
EOF#生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-scheduler-csr.json | cfssljson -bare kube-scheduler#生成kubeconfig文件
KUBE_CONFIG="/opt/kubernetes/cfg/kube-scheduler.kubeconfig"
KUBE_APISERVER="https://192.168.1.11:6443"kubectl config set-cluster kubernetes \--certificate-authority=/opt/kubernetes/ssl/ca.pem \--embed-certs=true \--server=${KUBE_APISERVER} \--kubeconfig=${KUBE_CONFIG}
kubectl config set-credentials kube-scheduler \--client-certificate=./kube-scheduler.pem \--client-key=./kube-scheduler-key.pem \--embed-certs=true \--kubeconfig=${KUBE_CONFIG}
kubectl config set-context default \--cluster=kubernetes \--user=kube-scheduler \--kubeconfig=${KUBE_CONFIG}
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}##创建 kube-scheduler.service 服务管理文件
cat >/usr/lib/systemd/system/kube-scheduler.service <<EOF
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-scheduler
ExecStart=/opt/kubernetes/bin/kube-scheduler \$KUBE_SCHEDULER_OPTS
Restart=on-failure[Install]
WantedBy=multi-user.target
EOFsystemctl daemon-reload
systemctl enable kube-scheduler
systemctl restart kube-scheduler

k8s-sert.sh

#!/bin/bash
cat > ca-config.json <<EOF
{"signing": {"default": {"expiry": "87600h"},"profiles": {"kubernetes": {"expiry": "87600h","usages": ["signing","key encipherment","server auth","client auth"]}}}
}
EOF#生成CA证书和私钥(根证书和私钥)
cat > ca-csr.json <<EOF
{"CN": "kubernetes","key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "Beijing","ST": "Beijing","O": "k8s","OU": "System"}]
}
EOFcfssl gencert -initca ca-csr.json | cfssljson -bare ca -#-----------------------
#生成 apiserver 的证书和私钥(apiserver和其它k8s组件通信使用)
#hosts中将所有可能作为 apiserver 的 ip 添加进去,后面 keepalived 使用的 VIP 也要加入
cat > apiserver-csr.json <<EOF
{"CN": "kubernetes","hosts": ["10.0.0.1","127.0.0.1","192.168.1.11","192.168.1.22","192.168.1.100","192.168.1.55","192.168.1.66","kubernetes","kubernetes.default","kubernetes.default.svc","kubernetes.default.svc.cluster","kubernetes.default.svc.cluster.local"],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "BeiJing","ST": "BeiJing","O": "k8s","OU": "System"}]
}
EOFcfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes apiserver-csr.json | cfssljson -bare apiserver#-----------------------
#生成 kubectl 连接集群的证书和私钥,具有admin权限
cat > admin-csr.json <<EOF
{"CN": "admin","hosts": [],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "BeiJing","ST": "BeiJing","O": "system:masters","OU": "System"}]
}
EOFcfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes admin-csr.json | cfssljson -bare admin#-----------------------
#生成 kube-proxy 的证书和私钥
cat > kube-proxy-csr.json <<EOF
{"CN": "system:kube-proxy","hosts": [],"key": {"algo": "rsa","size": 2048},"names": [{"C": "CN","L": "BeiJing","ST": "BeiJing","O": "k8s","OU": "System"}]
}
EOFcfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy
chmod +x *.sh
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
mkdir /opt/k8s/k8s-cert
mv /opt/k8s/k8s-cert.sh /opt/k8s/k8s-cert
cd /opt/k8s/k8s-cert/
./k8s-cert.sh

cp ca*pem apiserver*pem /opt/kubernetes/ssl/
cd /opt/k8s/
tar zxvf kubernetes-server-linux-amd64.tar.gz
cd /opt/k8s/kubernetes/server/bin
cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
ln -s /opt/kubernetes/bin/* /usr/local/bin/
cd /opt/k8s/
vim token.sh
#!/bin/bash
#获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ') 
#生成 token.csv 文件,按照 Token序列号,用户名,UID,用户组 的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF
chmod +x token.sh
./token.sh
cat /opt/kubernetes/cfg/token.csv
cd /opt/k8s/
./apiserver.sh 192.168.1.11 https://192.168.1.11:2379,https://192.168.1.33:2379,https://192.168.1.44:2379
ps aux | grep kube-apiserver
netstat -natp | grep 6443
cd /opt/k8s/
#启动 scheduler 服务
./scheduler.sh
ps aux | grep kube-scheduler
#启动 controller-manager 服务
./controller-manager.sh
ps aux | grep kube-controller-manager
#生成kubectl连接集群的kubeconfig文件
./admin.sh
#通过kubectl工具查看当前集群组件状态
kubectl get cs

部署node:

在所有node操作

创建kubernetes工作目录

mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}

准备kubelet.sh、proxy.sh

kubelet.sh

#!/bin/bashNODE_ADDRESS=$1
DNS_SERVER_IP=${2:-"10.0.0.2"}#创建 kubelet 启动参数配置文件
cat >/opt/kubernetes/cfg/kubelet <<EOF
KUBELET_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--hostname-override=${NODE_ADDRESS} \\
--network-plugin=cni \\
--kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\
--bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\
--config=/opt/kubernetes/cfg/kubelet.config \\
--cert-dir=/opt/kubernetes/ssl \\
--pod-infra-container-image=registry.cn-hangzhou.aliyuncs.com/google-containers/pause-amd64:3.0"
EOF#--hostname-override:指定kubelet节点在集群中显示的主机名或IP地址,默认使用主机hostname;kube-proxy和kubelet的此项参数设置必须完全一致
#--network-plugin:启用CNI
#--kubeconfig:指定kubelet.kubeconfig文件位置,当前为空路径,会自动生成,用于如何连接到apiserver,里面含有kubelet证书,master授权完成后会在node节点上生成 kubelet.kubeconfig 文件
#--bootstrap-kubeconfig:指定连接 apiserver 的 bootstrap.kubeconfig 文件
#--config:指定kubelet配置文件的路径,启动kubelet时将从此文件加载其配置
#--cert-dir:指定master颁发的kubelet证书生成目录
#--pod-infra-container-image:指定Pod基础容器(Pause容器)的镜像。Pod启动的时候都会启动一个这样的容器,每个pod之间相互通信需要Pause的支持,启动Pause需要Pause基础镜像#----------------------
#创建kubelet配置文件(该文件实际上就是一个yml文件,语法非常严格,不能出现tab键,冒号后面必须要有空格,每行结尾也不能有空格)
cat >/opt/kubernetes/cfg/kubelet.config <<EOF
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
address: ${NODE_ADDRESS}
port: 10250
readOnlyPort: 10255
cgroupDriver: cgroupfs
clusterDNS:
- ${DNS_SERVER_IP} 
clusterDomain: cluster.local
failSwapOn: false
authentication:anonymous:enabled: true
EOF#PS:当命令行参数与此配置文件(kubelet.config)有相同的值时,就会覆盖配置文件中的该值。#----------------------
#创建 kubelet.service 服务管理文件
cat >/usr/lib/systemd/system/kubelet.service <<EOF
[Unit]
Description=Kubernetes Kubelet
After=docker.service
Requires=docker.service[Service]
EnvironmentFile=/opt/kubernetes/cfg/kubelet
ExecStart=/opt/kubernetes/bin/kubelet \$KUBELET_OPTS
Restart=on-failure
KillMode=process[Install]
WantedBy=multi-user.target
EOFsystemctl daemon-reload
systemctl enable kubelet
systemctl restart kubelet

proxy.sh

#!/bin/bashNODE_ADDRESS=$1#创建 kube-proxy 启动参数配置文件
cat >/opt/kubernetes/cfg/kube-proxy <<EOF
KUBE_PROXY_OPTS="--logtostderr=true \\
--v=4 \\
--hostname-override=${NODE_ADDRESS} \\
--cluster-cidr=172.17.0.0/16 \\
--proxy-mode=ipvs \\
--kubeconfig=/opt/kubernetes/cfg/kube-proxy.kubeconfig"
EOF#--hostnameOverride: 参数值必须与 kubelet 的值一致,否则 kube-proxy 启动后会找不到该 Node,从而不会创建任何 ipvs 规则
#--cluster-cidr:指定 Pod 网络使用的聚合网段,Pod 使用的网段和 apiserver 中指定的 service 的 cluster ip 网段不是同一个网段。 kube-proxy 根据 --cluster-cidr 判断集群内部和外部流量,指定 --cluster-cidr 选项后 kube-proxy 才会对访问 Service IP 的请求做 SNAT,即来自非 Pod 网络的流量被当成外部流量,访问 Service 时需要做 SNAT。
#--proxy-mode:指定流量调度模式为ipvs模式,可添加--ipvs-scheduler选项指定ipvs调度算法(rr|wrr|lc|wlc|lblc|lblcr|dh|sh|sed|nq)
#--kubeconfig: 指定连接 apiserver 的 kubeconfig 文件	#----------------------
#创建 kube-proxy.service 服务管理文件
cat >/usr/lib/systemd/system/kube-proxy.service <<EOF
[Unit]
Description=Kubernetes Proxy
After=network.target[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-proxy
ExecStart=/opt/kubernetes/bin/kube-proxy \$KUBE_PROXY_OPTS
Restart=on-failure[Install]
WantedBy=multi-user.target
EOFsystemctl daemon-reload
systemctl enable kube-proxy
systemctl restart kube-proxy
chmod +x kubelet.sh proxy.sh

在 master01 节点上操作

cd /opt/k8s/kubernetes/server/bin
scp kubelet kube-proxy root@192.168.1.33:/opt/kubernetes/bin/
scp kubelet kube-proxy root@192.168.1.44:/opt/kubernetes/bin/
mkdir /opt/k8s/kubeconfig
cd /opt/k8s/kubeconfig

在/opt/k8s/kubeconfig/目录下准备kubeconfig.sh

kubeconfig.sh

#!/bin/bash
#example: kubeconfig 192.168.1.11 /opt/k8s/k8s-cert/
#创建bootstrap.kubeconfig文件
#该文件中内置了 token.csv 中用户的 Token,以及 apiserver CA 证书;kubelet 首次启动会加载此文件,使用 apiserver CA 证书建立与 apiserver 的 TLS 通讯,使用其中的用户 Token 作为身份标识向 apiserver 发起 CSR 请求BOOTSTRAP_TOKEN=$(awk -F ',' '{print $1}' /opt/kubernetes/cfg/token.csv)
APISERVER=$1
SSL_DIR=$2export KUBE_APISERVER="https://$APISERVER:6443"# 设置集群参数
kubectl config set-cluster kubernetes \--certificate-authority=$SSL_DIR/ca.pem \--embed-certs=true \--server=${KUBE_APISERVER} \--kubeconfig=bootstrap.kubeconfig
#--embed-certs=true:表示将ca.pem证书写入到生成的bootstrap.kubeconfig文件中# 设置客户端认证参数,kubelet 使用 bootstrap token 认证
kubectl config set-credentials kubelet-bootstrap \--token=${BOOTSTRAP_TOKEN} \--kubeconfig=bootstrap.kubeconfig# 设置上下文参数
kubectl config set-context default \--cluster=kubernetes \--user=kubelet-bootstrap \--kubeconfig=bootstrap.kubeconfig# 使用上下文参数生成 bootstrap.kubeconfig 文件
kubectl config use-context default --kubeconfig=bootstrap.kubeconfig#----------------------#创建kube-proxy.kubeconfig文件
# 设置集群参数
kubectl config set-cluster kubernetes \--certificate-authority=$SSL_DIR/ca.pem \--embed-certs=true \--server=${KUBE_APISERVER} \--kubeconfig=kube-proxy.kubeconfig# 设置客户端认证参数,kube-proxy 使用 TLS 证书认证
kubectl config set-credentials kube-proxy \--client-certificate=$SSL_DIR/kube-proxy.pem \--client-key=$SSL_DIR/kube-proxy-key.pem \--embed-certs=true \--kubeconfig=kube-proxy.kubeconfig# 设置上下文参数
kubectl config set-context default \--cluster=kubernetes \--user=kube-proxy \--kubeconfig=kube-proxy.kubeconfig# 使用上下文参数生成 kube-proxy.kubeconfig 文件
kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
chmod +x kubeconfig.sh
./kubeconfig.sh 192.168.1.11 /opt/k8s/k8s-cert/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.1.33:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.1.44:/opt/kubernetes/cfg/
kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap若执行失败,可先给kubectl绑定默认cluster-admin管理员集群角色,授权集群操作权限
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

在node01节点操作

cd /opt/
./kubelet.sh 192.168.1.33
ps aux | grep kubelet

在 master01 节点上操作

kubectl get csr

kubectl certificate approve node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFEkubectl get csr

在 node01 节点上操作

for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done
cd /opt/
./proxy.sh 192.168.1.33
ps aux | grep kube-proxy

部署 Calico网络:

在 master01 节点上操作

准备calico.yaml 文件到 /opt/k8s 目录中

           # - name: CALICO_IPV4POOL_CIDR#   value: "10.244.0.0/16"

修改里面定义 Pod 的网络(CALICO_IPV4POOL_CIDR),需与前面 kube-controller-manager 配置文件指定的 cluster-cidr 网段一样

kubectl apply -f calico.yaml
kubectl get pods -n kube-system
kubectl get nodes

部署node02:

在node01操作

cd /opt/
scp kubelet.sh proxy.sh root@192.168.1.44:/opt/
scp -r /opt/cni root@192.168.1.44:/opt/

在node02操作

cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.1.44

在 master01 节点上操作

kubectl get csr
kubectl certificate approve node-csr-nh4DGjA-xNcE_dJ0blI6HTgz-XcqTkD5MFiGQQ9mEoQ
kubectl get csr

在 node02 节点上操作

for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.1.44

在 master01 节点上操作

kubectl get nodes

部署 CoreDNS

在所有 node 节点上操作

上传 coredns.tar 到 /opt 目录中

cd /opt
docker load -i coredns.tar

在 master01 节点上操作

上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS 

cd /opt/k8s
kubectl apply -f coredns.yaml
kubectl get pods -n kube-system 

DNS 解析测试

kubectl run -it --rm dns-test --image=busybox:1.28.4 sh

如果出现以下报错
[root@master01 k8s]# kubectl run -it  --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
Error attaching, falling back to logs: unable to upgrade connection: Forbidden (user=system:anonymous, verb=create, resource=nodes, subresource=proxy)
Error from server (Forbidden): Forbidden (user=system:anonymous, verb=get, resource=nodes, subresource=proxy) ( pods/log sh)

需要添加 rbac的权限  直接使用kubectl绑定  clusteradmin 管理员集群角色  授权操作权限

[root@master01 k8s]# kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous
clusterrolebinding.rbac.authorization.k8s.io/cluster-system-anonymous created

master02 节点部署 :

从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点

scp -r /opt/etcd/ root@192.168.1.22:/opt/
scp -r /opt/kubernetes/ root@192.168.1.22:/opt
scp -r /root/.kube root@192.168.1.22:/root
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.1.22:/usr/lib/systemd/system/

在master02上修改配置文件kube-apiserver中的IP

vim /opt/kubernetes/cfg/kube-apiserver
--etcd-servers=https://192.168.1.11:2379,https://192.168.1.33:2379,https://192.168.1.44:2379 \
--bind-address=192.168.1.22 \
--secure-port=6443 \
--advertise-address=192.168.1.22 \
--allow-privileged=true \

在 master02 节点上启动各服务并设置开机自启

systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

查看node节点状态

ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/12750.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

渲染农场是什么意思?瑞云渲染为你解答

渲染农场是一种通过集合多台计算机的计算能力来加速图像渲染过程的系统。它尤其适用于动画、电影特效和高端视觉效果的制作&#xff0c;这些领域通常需要处理非常复杂和计算密集型的渲染任务。 渲染农场就是一大群电脑&#xff0c;他们一起可以快速渲染出漂亮的图像。在做动画片…

客观需求验证的常见5大步骤(实施版)

我们在挖掘用户需求时&#xff0c;往往容易犯伪需求或需求错位等问题&#xff0c;因此需要进行客观需求验证。通过客观的验证&#xff0c;我们可以有效减少主观判断误差问题&#xff0c;确保需求的准确性&#xff0c;从而降低需求变更和项目风险的概率&#xff0c;减少开发成本…

LeetCode算法题:11. 盛最多水的容器(Java)(双指针问题总结)

给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 提示&#xff1a; n height.length2 <…

第十四届蓝桥杯大赛软件赛国赛C/C++ 大学 B 组 数三角

//枚举顶点。 //不存在等边三角形 #include<bits/stdc.h> using namespace std; #define int long long const int n2e311; int a,b,c,l[n],r[n]; signed main() {ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);cin>>a;for(int i1;i<a;i){cin>>…

UE4_环境_局部雾化效果

学习笔记&#xff0c;不喜勿喷&#xff01;侵权立删&#xff01;祝愿大家生活越来越好&#xff01; 本文重点介绍下材质节点SphereMask节点在体积雾中的使用方法。 一、球体遮罩SphereMask材质节点介绍&#xff1a; 球体蒙版&#xff08;SphereMask&#xff09; 表达式根据距…

2024红帽全球峰会:CEO行业洞察分享

作为全球IT领域一年一度的行业盛宴&#xff0c;2024红帽全球峰会于近日盛大召开。生成式AI与大模型是当前IT行业最受关注的热点话题&#xff0c;而红帽在生成式AI与大模型领域的最新动作&#xff0c;也理所当然地成为了本届峰会观众目光聚集的焦点。 作为世界领先的开源解决方案…

使用vcpkg与json文件自动安装项目依赖库

说明 本文记录自己使用vcpkg.json文件自动安装依赖库并完成编译的全过程。 关于vcpkg是什么这里就不多详细解释&#xff0c;可以看一下专门的介绍及安装的文章&#xff0c;总之了解这是一个C的包管理工具就可以了。 流程 下面介绍从GitHub上克隆C项目以及为这个项目安装所需…

二叉树的常见操作

建立树 复制二叉树 计算深度 计算总结点数 计算叶子结点数

OpenHarmony标准设备应用开发(二)——布局、动画与音乐

本章是 OpenHarmony 标准设备应用开发的第二篇文章。我们通过知识体系新开发的几个基于 OpenHarmony3.1 Beta 标准系统的样例&#xff1a;分布式音乐播放、传炸弹、购物车等样例&#xff0c;分别介绍下音乐播放、显示动画、动画转场&#xff08;页面间转场&#xff09;三个进阶…

AI工具的热门与卓越:揭示AI技术的实际应用和影响

文章目录 每日一句正能量前言常用AI工具创新AI应用个人体验分享后记 每日一句正能量 我们在我们的劳动过程中学习思考&#xff0c;劳动的结果&#xff0c;我们认识了世界的奥妙&#xff0c;于是我们就真正来改变生活了。 前言 随着人工智能&#xff08;AI&#xff09;技术的快…

深度剖析MyBatis的二级缓存

二级缓存的原理 MyBatis 二级缓存的原理是什么&#xff1f; 二级缓存的原理和一级缓存一样&#xff0c;第一次查询会将数据放到 缓存 中&#xff0c;然后第二次查询直接去缓存读取。但是一级缓存是基于 SqlSession 的&#xff0c;二级缓存是基于 mapper 的 namespace 的。也就是…

Qt运行时,如何设置第一个聚焦的控件

问题&#xff1a;Qt第一个聚焦的控件&#xff0c;如何自行设置&#xff1f; 尝试&#xff1a; 1.在代码中设置 lineEdit->setFocus() 。无效&#xff01; 2.Qt Designer–打开form1.ui–菜单栏下一行–Edit Tab Order–按顺序点击–菜单栏下一行–Edit Widgets–退出。无效…

【easyX】动手轻松掌握easyX 1

01 简单绘图 在这个程序中&#xff0c;我们先初始化绘图窗口。其次&#xff0c;简单绘制两条线。 #include <graphics.h>//绘图库头文件 #include <stdio.h> int main() {initgraph(640, 480);//初始化640✖480绘图屏幕line(200, 240, 440, 240);//画线(200,240)…

MySQL是如何选择索引的?

2.3.5. 索引选择 MySQL是如何选择索引的&#xff1f; 优化器决定了具体某一索引的选择&#xff0c;也就是常说的执行计划。而优化器的选择是基于成本&#xff08;cost&#xff09;&#xff0c;哪个索引的成本越低&#xff0c;优先使用哪个索引。 SQL 优化器会分析所有可能的执…

开放式运动耳机哪款好用?五款高性能值得信赖产品推荐

身为户外运动的达人&#xff0c;我发现开放式运动耳机简直是咱们运动时的最佳拍档&#xff0c;不管是跑步还是健身&#xff0c;开放式运动耳机最为舒适&#xff0c;它的妙处就在于不用塞进耳朵&#xff0c;这样既安全又卫生&#xff0c;户外动起来更放心。但市面上好坏参半&…

【半夜学习MySQL】内置函数(含日期、字符串、数学等函数常用用法介绍及示例详解)

&#x1f3e0;关于专栏&#xff1a;半夜学习MySQL专栏用于记录MySQL数据相关内容。 &#x1f3af;每天努力一点点&#xff0c;技术变化看得见 文章目录 日期函数字符串函数数学函数其他函数 日期函数 函数名称描述current_date()当前日期current_time()当前时间current_time()…

幻兽帕鲁Palworld服务器手动部署

目录 帕鲁官方文档手动安装steamcmd通过steamcmd安装帕鲁后端客户端连接附录&#xff1a;PalServer.sh的启动项附录&#xff1a;配置文件 帕鲁官方文档 https://tech.palworldgame.com/ 手动安装steamcmd 创建steam用户 sudo useradd -m steam sudo passwd steam下载steamc…

你写HTML的时候,会注重语义化吗?

其实说到语义化&#xff0c;多年前端开发经验的老手估计也不会太在意&#xff0c;有时候工期太紧&#xff0c;有时候自己疏忽&#xff0c;也就不那么在意了&#xff0c;直接DIVCSS一把梭下去了。 目录 什么是HTML 什么是HTML语义化 HTML语义化所带来的好处 我把CSS样式引入…

_pickle.UnpicklingError: STACK_GLOBAL requires str

导致这个报错的原因是我跑yolo的时候修改数据集了&#xff0c;里面的label.cache没有删除&#xff0c;咱只要删除掉缓存就行&#xff01;&#xff01; 我这里是已经删除掉了&#xff0c;所以图片里面没有&#xff0c;一般就是在箭头所示位置有.cache文件的

Vue3知识总结-4

Vue3知识总结-4 文章目录 Vue3知识总结-4插槽Slots渲染作用域默认内容具名插槽插槽中的数据传递具名插槽传递数据 组件声明周期声明周期示意图 组件生命周期的应用动态组件组件保持存活组件被卸载 异步组件依赖注入 插槽Slots 在某些场景中&#xff0c;可能想要为子组件传递一…