Golang内存、指针逃逸、垃圾回收机制概览

最近看到了一篇文章是关于go的内存、指针逃逸和垃圾回收机制的,发现自己并未很细致的了解过这方面的内容,于是在翻阅各种文章的情况下,写出了这篇总结,参考文章放在文末,可自取

内存

Go 语言使用一个自带的垃圾收集器(Garbage Collector, GC)来自动管理内存,这意味着程序员不需要直接参与内存的分配和释放,这减少了内存泄漏和其他内存相关错误的可能性。Go 中的内存可以分为两个主要部分:

  1. 栈(Stack):栈通常存储大小生命周期是能被预估的数据。函数内的局部变量和返回值;管理采用先进后出的模式,不需要复杂的垃圾回收机制;栈的特点是拥有非常高的访问速度和较低的内存分配开销,但空间有限。
  2. 堆(Heap):用于存储运行时可能变化的数据,或函数作用域之外需要访问的数据;更大规模的内存区域,用于存储生命周期较长或大小无法预知的数据。堆内存的分配和回收成本相对较高,但可以动态地扩展。

可以通过以下命令来分析应用程序:

go build -gcflags=-m main.go

指针逃逸

指针逃逸分析是 Go 编译器进行的一种优化。通过这种分析,编译器确定变量的存储位置(栈还是堆)。如果一个变量在函数结束后仍然可以被访问(例如,被其他函数引用或返回给调用者),这个变量就会从栈“逃逸”到堆。

指针逃逸的主要影响是性能:

  • 栈分配的变量:当函数调用结束时,这些变量的内存可以立即被清理,这一过程非常快速且高效。
  • 堆分配的变量:需要垃圾收集器介入来回收这部分内存,这可能导致额外的性能开销。

深入理解指针逃逸

在 Go 中,编译器进行逃逸分析是为了决定数据应当存放在堆上还是栈上。我们已经知道,存放在栈上的数据有着更快的访问速度和更简单的生命周期管理,但栈的空间有限且仅在函数执行期间存在。相反,堆上的数据可以在函数执行完毕后继续存在,但其管理成本较高,因为涉及到复杂的垃圾回收机制。

何时发生逃逸?

  1. 返回局部变量的地址:如果函数返回局部变量的指针,这个变量就会从函数的栈帧中逃逸到堆,因为局部变量的生命周期必须延长到函数外部。
  2. 大对象:即使对象没有被外部引用,如果对象非常大,它可能也会被分配到堆上,以避免栈溢出。
  3. 动态类型:如接口或含有接口的类型。由于接口的动态特性,编译器可能无法预测具体的实现类型和大小,因此可能选择将其分配到堆上。
  4. 闭包:引用外部函数局部变量的闭包可能导致这些变量逃逸,因为这些变量必须在闭包存在时继续存在。

优化技巧

理解和优化指针逃逸可以使得 Go 程序更加高效。以下是一些常见的优化技巧:

  • 避免不必要的堆分配:尽量使用局部变量和传值,避免在不必要的情况下创建指针。
  • 使用对象池:对于频繁使用和创建的对象,可以使用 sync.Pool 来复用对象,减少垃圾收集的负担。
  • 分析逃逸情况:使用 go build -gcflags="-m" 命令来查看编译器的逃逸分析结果,了解哪些变量逃逸到堆,并探索优化方法。
  • 配置垃圾收集器:通过设置 GOGC 环境变量(默认值是 100),可以调整垃圾收集器的敏感度。增加这个值会减少垃圾收集的频率,可能增加程序的整体内存使用,但可以减少因垃圾收集引起的延迟。

垃圾回收机制

Go语言的垃圾回收(GC)机制是一种自动内存管理的实现,它旨在帮助程序开发者免除手动管理内存的复杂性。Go的垃圾回收器主要基于“标记-清扫”(Mark-and-Sweep)算法,但随着版本的更新,Go团队已经对其进行了优化和改进,引入了并发的执行和更多的性能优化措施。Go的GC实现的特点是并发执行,且尽量减少对程序执行的干扰。

overview

设计原则

Go的垃圾回收器设计目标是简化并发程序的内存管理,同时实现以下几个关键目标:

  1. 效率:尽量减少GC的CPU和内存开销。
  2. 并发:GC过程与用户程序并发执行,减少STW(Stop-The-World)的影响。
  3. 实时性:保证程序的响应时间,通过减少GC引起的延迟。

垃圾回收器

垃圾回收器中的变量通常分为以下三类:

  • 活动堆内存(在上一次垃圾回收周期中标记为“活动”的内存)
  • 新堆内存(尚未由垃圾回收器分析的堆内存)
  • 内存用于存储一些元数据,通常与前两个实体相比微不足道。

垃圾回收器的CPU时间消耗与其工作特性有关。有一种称为“全停顿”的垃圾回收器实现,它会在垃圾回收期间完全停止程序执行,导致CPU时间用于非生产性工作。

在Go的情况下,垃圾回收器并非完全“全停顿”,并且在应用程序执行过程中并行执行大部分工作,例如堆标记。

然而,垃圾回收器仍然有一些限制,并且在一个周期内多次完全停止执行工作代码。

垃圾收集的性能开销和内存使用效率直接关联到逃逸分析的结果。减少堆分配可以显著降低垃圾收集的频率和延迟,从而提高程序的整体性能。

核心算法

Go 的垃圾收集器是一个实现了三色标记清除算法的并发收集器。垃圾收集过程主要分为以下几个阶段:

初始化阶段

GC的启动通常由内存分配触发,当分配的总内存量达到当前堆大小的一定比例(由**GOGC**环境变量控制,默认为100%)时,GC开始工作。

标记阶段(Mark Phase)

在这一阶段,垃圾回收器通过从根对象(如全局变量和当前所有Goroutine的栈)出发,标记所有可达的对象。Go使用写屏障(write barrier),在运行时对对象进行标记,这有助于垃圾回收器在应用程序运行时并发执行。

  • 三色抽象:使用黑色、灰色和白色来代表不同状态的对象:
    • 黑色:对象及其子对象都已经被扫描,不会再引用新的白色对象。
    • 灰色:对象被标记为存活,但其子对象还未扫描完。
    • 白色:对象未被访问,可能是垃圾。

gif

清扫阶段(Sweep Phase)

标记完成后,GC进入清扫阶段。在这个阶段,GC遍历堆中的所有对象,释放那些标记为白色的对象所占用的内存。清扫阶段通常也是并发进行,不会中断程序的正常执行。

如何管理垃圾回收器

有一个参数允许您在Go中管理垃圾回收器:GOGC环境变量或其功能等效项SetGCPercent,来自runtime/debug包。

GOGC参数决定了在触发垃圾回收时相对于活动内存的新未分配堆内存的百分比。

GOGC的默认值为100,这意味着当新内存的数量达到活动堆内存的100%时,将触发垃圾回收。

优化和改进

并发垃圾回收

Go的GC从版本1.5开始实施并发标记,这显著降低了STW的时间。在最近的版本中,Go团队进一步减少了GC操作中必须停止程序执行的时间。

写屏障

写屏障是用来维护GC标记正确性的技术。当程序运行时修改对象引用时,写屏障确保这些改动不会破坏正在进行的垃圾回收过程。Go使用的是混合写屏障,它在GC期间启用,有助于标记阶段的并发执行。

调节和配置

  • GOGC环境变量:通过设置这个环境变量,开发者可以控制GC触发的频率。增大这个值会增加堆的允许大小,从而减少GC的频率,反之亦然。
  • runtime/debug 包:提供了更细粒度的控制,比如**SetGCPercent**函数允许在运行时调整GC的触发阈值。

性能考量

尽管Go的GC是高度优化的,但在内存密集或延迟敏感的应用中,GC仍可能成为性能瓶颈。开发者需要通过剖析工具(如pprof)定期检查GC的性能影响,并适当调整GC配置以优化应用性能。

参考文章

  1. Golang垃圾回收(GC)介绍
  2. Memory Optimization and Garbage Collector Management in Go

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/1183.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

修复vite中使用react提示Fast refresh only works when a file only exports components.

前言 我通过 vite 构建了一个 react 应用并使用 react.lazy 来懒加载组件,但是在使用过程中 一直提示 Fast refresh only works when a file only exports components. Move your component(s) to a separate file.eslint(react-refresh/only-export-components)。…

PSA Group EDI 需求分析

PSA集团(以下简称PSA)中文名为标致雪铁龙集团,是一家法国私营汽车制造公司,致力于为全球消费者提供独具特色的汽车体验和自由愉悦的出行方案,旗下拥有标致、雪铁龙、DS、欧宝、沃克斯豪尔五大汽车品牌。 汽车制造企业对…

动力学重构/微分方程参数拟合 - 基于模型

这一篇文章,主要是给非线性动力学,对微分方程模型参数拟合感兴趣的朋友写的。笼统的来说,这与混沌系统的预测有关;传统的机器学习的模式识别虽然也会谈论预测结果,但他们一般不会涉及连续的预测。这里我们考虑的是&…

Rokid AR Lite空间计算套装发布,中国空间计算踏上差异化领先之路

动动手指、动动眼睛就可以“操控一切”,这种颇具科幻感、未来感的交互方式,令许多人感叹“未来已来”。而这令人震撼的变革背后,正是空间计算技术的迅猛崛起与广泛应用,使得这种曾经只存在于想象中的交互方式,如今正逐…

循环神经网络(RNN):概念、挑战与应用

循环神经网络(RNN):概念、挑战与应用 1 引言 1.1 简要回顾 RNN 在深度学习中的位置与重要性 在深度学习的壮丽图景中,循环神经网络(Recurrent Neural Networks,RNN)占据着不可或缺的地位。自从…

Linux 磁盘管理和文件系统

硬盘的物理结构: 盘片硬盘有多个盘片,每盘片2面磁头每面一个磁头 硬盘的数据结构: 扇区盘片被分为多个扇形区域,扇区:每个扇区存放512字节的数据,硬盘的最小存储单位磁道同一盘片不同半径的同心圆,是由磁…

软件设计师软考中项学习(二)之计算机系统基础知识

读者大大们好呀!!!☀️☀️☀️ 🔥 欢迎来到我的博客 👀期待大大的关注哦❗️❗️❗️ 🚀欢迎收看我的主页文章➡️寻至善的主页 文章目录 学习目标学习内容学习笔记学习总结 学习目标 计算机系统硬件基本组成 中央处理…

友思特应用 | 红外视角的延伸:短波红外相机的机器视觉应用

导读 短波红外SWIR在不同波段针对不同材料的独特成像特征为各领域检测应用的拓宽提供了基础。本文将展现短波红外成像技术在水分检测、塑料检测、太阳能电池板检查和矿场开采等领域的丰富应用案例,讨论短波红外相机在未来的发展方向。 SWIR 背景简介 短波红外 &am…

上位机图像处理和嵌入式模块部署(树莓派4b和视觉slam十四讲)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 实际使用中,树莓派4b是非常好的一个基础平台。本身板子价格也不是很贵,建议大家多多使用。之前关于vslam,也就是…

R语言中的execl数据转plink

文章目录 带出外部连接的方式添加列的方式从列表中选出对应的数据信息查看变量信息没有成功 带出外部连接的方式 点击这个黄色的按钮就可以弹出外部链接的方式 添加列的方式 创建一个数据框的方式 我们创建一个三行三列的数据方式 df <- data.frame(name c("Alice&…

【CSS】深入理解:BFC究竟是什么?

深入理解&#xff1a;BFC究竟是什么&#xff1f; 在我们了解BFC之前&#xff0c;我们先来看看什么是FC 1. FC的概念 FC全称 Formatting Context ,元素在标准流里面都属于一个FC 块级元素的布局都属于Block Formatting Context,也就是BFC block level box都是在BFC中布局的 …

利用AQS(AbstractQueuedSynchronizer)实现一个线程同步器

目录 1. 前言 2. 什么是同步器 3. 同步器实现思路 Semaphore(信号量) 4. 代码实现 4.1. 创建互斥锁类 4.2 编写静态内部类&#xff0c;继承AQS 4.3 内部类实现AQS钩子函数 4.3 封装lock&#xff0c;unlock方法 4.4. 测试 5. 总结 本文章源码仓库&#xff1a;Conc…

【算法刷题 | 回溯思想 06】4.17(子集、子集||)

文章目录 9.子集9.1题目9.2解法&#xff1a;回溯9.2.1回溯思路&#xff08;1&#xff09;函数返回值以及参数&#xff08;2&#xff09;终止条件&#xff08;3&#xff09;遍历过程 9.2.2代码实现 10.子集 ||10.1题目10.2解法&#xff1a;回溯10.2.1回溯思路10.2.2代码实现 9.子…

(2022级)成都工业学院数据库原理及应用实验五: SQL复杂查询

写在前面 1、基于2022级软件工程/计算机科学与技术实验指导书 2、成品仅提供参考 3、如果成品不满足你的要求&#xff0c;请寻求其他的途径 运行环境 window11家庭版 Navicat Premium 16 Mysql 8.0.36 实验要求 在实验三的基础上完成下列查询&#xff1a; 1、查询医生…

DSSAT作物模型建模方法与进阶基于Python语言快速批量运行DSSAT模型及交叉融合、扩展应用技术应用

随着数字农业和智慧农业的发展&#xff0c;基于过程的作物生长模型&#xff08;Process-based Crop Growth Simulation Model&#xff09;在模拟作物对气候变化的响应与适应、农田管理优化、作物品种和株型筛选、农业碳中和、农田固碳减排等领域扮演着越来越重要的作用。Decisi…

安卓官方例程

https://learn.microsoft.com/zh-cn/shows/connecton-demand/202?sourcerecommendations https://learn.microsoft.com/zh-cn/visualstudio/cross-platform/cross-platform-mobile-development-in-visual-studio?viewvs-2022 https://learn.microsoft.com/zh-cn/shows/xamari…

pta L1-063 吃鱼还是吃肉

L1-063 吃鱼还是吃肉 分数 10 全屏浏览 切换布局 作者 陈越 单位 浙江大学 国家给出了 8 岁男宝宝的标准身高为 130 厘米、标准体重为 27 公斤&#xff1b;8 岁女宝宝的标准身高为 129 厘米、标准体重为 25 公斤。 现在你要根据小宝宝的身高体重&#xff0c;给出补充营养的…

Abstract Factory抽象工厂模式详解

模式定义 提供一个创建一系列相关或互相依赖对象的接口&#xff0c;而无需指定它们具体的类。 代码示例 public class AbstractFactoryTest {public static void main(String[] args) {IDatabaseUtils iDatabaseUtils new OracleDataBaseUtils();IConnection connection …

前端页面助手 (vue)

快速开发页面&#xff08;图形化开发页面&#xff09; 自主编辑 然后自己也可以修改属性 最后导出页面即可 github地址 ;https://github.com/opentiny/tiny-engine

图灵奖简介及2023年获奖者Avi Wigderson的贡献

No.内容链接1Openlayers 【入门教程】 - 【源代码示例300】 2Leaflet 【入门教程】 - 【源代码图文示例 150】 3Cesium 【入门教程】 - 【源代码图文示例200】 4MapboxGL【入门教程】 - 【源代码图文示例150】 5前端就业宝典 【面试题详细答案 1000】 文章目录 2023年的…