MongoDB和AI 赋能行业应用:制造业和汽车行业

请添加图片描述

欢迎阅读“MongoDB和AI 赋能行业应用”系列的第一篇。

本系列重点介绍AI应用于不同行业的关键用例,涵盖制造业和汽车行业、金融服务、零售、电信和媒体、保险以及医疗保健行业

随着人工智能(AI)在制造业和汽车行业的集成,传统的价值链正在经历一场革命性的转变。工业物联网(IoT)的引入使得企业能够从资产中收集和分析大量数据,这不仅提升了库存管理的智能化水平,还使得预测性维护成为可能,极大地提高了运营效率和可靠性。

库存管理

高效的供应链不仅可以确保准时向客户交付,而且还可以控制运营成本。为了实现这个目标,管理并优化库存水平、规划需求波动以及削减成本都是至关重要的。然而,高效的库存管理也给制造商带来了复杂的数据挑战,主要是在准确预测需求和优化库存水平方面。这些正是AI可以提供帮助的地方。

在这里插入图片描述

图1:使用MongoDB 进行的生成式人工智能(Gen AI)需求预测

AI算法可以分析复杂的数据集,从而预测客户对产品或组件未来的需求。需求预测的准确性越高,则越有利于维持最佳的库存水平。

预测需求量:客户需求是在快速变化的,而基于AI的时间序列预测可以帮助制造商快速适应,通过分析历史销售数据和市场趋势,确定最合适的库存水平,甚至避免人工错误。

制定需求管理模式:Gen AI可以帮助生成库存的综合数据和时令性调整的需求模式。

场景模拟:Gen AI可以帮助创建模拟供应链中断的场景。

MongoDB 可以让这些过程更轻松地实现。在仓库中,可以使用移动设备扫描库存,并将这些数据持久化到MongoDB中,并使用Device Sync同步到MongoDB(此方案已有MongoDB客户在使用,如Grainger)。一旦数据进入MongoDB,它就可以作为所有库存相关数据的中央存储库,同时为AI应用程序提供数据来源,从而消除数据孤岛,提高整体库存水平和动态的可见性。通过使用MongoDB 的Vector Search和Gen AI,制造商可以轻松地根据时令属性对产品进行分类,对具有相似时令需求模式的产品进行聚类,并为基础模型提供上下文,从而提高库存的综合数据生成的准确性。

预测性维护

如今,最基本的维护方法是被动的——让资产保持运行,直到实际发生故障为止。资产仅根据需要维护,因此很难进行预估。然而,预防性维护则根据保守的时间表更换系统或组件,从而防止常见故障的发生,但由于要在产品报废前频繁更换组件,因此预防性维护的实施成本很高。

在这里插入图片描述

图2:使用MongoDB进行基于音频的异常检测

AI可以让预测性维护更加高效,利用物联网传感器从机器上收集数据,并通过对数据进行训练来检测异常情况,从而有效地进行预测性维护。

异常预警:ML/AI 算法(如回归模型或决策树)在预处理数据上进行训练,部署在现场环境进行推理,并持续分析传感器数据。检测到异常情况时,会生成警报通知维护人员,这样就可以主动规划和执行维护操作,最大限度地减少停机时间,优化设备可靠性和性能。为了提高准确性,可以部署检索增强生成(RAG)架构来生成或管理数据预处理器,从而补充专业的数据科学知识,同时也可以让领域专家为大型语言模型提供正确的指令。

维修指导:一旦AI模型生成了维修警报,Gen AI就可以进一步提出维修策略建议,并将备件库存数据、维修预算和个人可用性考虑在内。最后,还可以将维修手册可以处理成向量,输入给智能问答机器人,从而指导技术人员进行实际维修。

MongoDB能够有效支撑以上场景。

一方面,MongoDB固有的灵活的文档模型支持开发者随时进行数据管理。由于机器健康预测模型不仅需要传感器数据,还需要维护历史和库存数据,因此文档模型非常适合对这些不同的数据源进行建模,从而支撑预测模型的训练。

另一方面,在物理产品的维护和支持过程中,必须提供产品信息和备件文档等信息,并方便支持人员访问,而MongoDB 提供的全文检索功能就可以帮助工作人员从集群中轻松检索信息。制造商可以使用MongoDB 探索简化机器诊断的方法,比如从机器中录制音频文件并转化为向量,通过向量检索获得类似的案例。还可以使用RAG实现一个智能问答机器人,技术人员通过与机器人对话获得最符合当下情况的维修指导,了解如何一步一步进行维修操作。

自动驾驶

随着车联网的兴起,汽车制造商不得不将其业务模式转变为软件优先型。汽车制造商开始利用联网汽车产生的数据创建更好的辅助驾驶系统,然而,要制造出比人类驾驶更安全的全自动驾驶汽车是非常难的。一些专家估计,实现 5 级自动驾驶的技术已开发了约 80%,但剩下的 20% 是非常难攻克的,需要大量时间来完善。

在这里插入图片描述

图3:MongoDB在自动驾驶中的应用

汽车应用中基于AI的图像和目标识别存在不确定性,但制造商仍然要利用雷达、激光雷达、摄像头和车辆遥测数据来不断进行模型训练。现代汽车就像一个数据中心,不断收集和处理来自车载传感器和摄像头的信息,从而产生大量的数据。强大的存储和分析能力对于管理这些数据至关重要,而实时分析对于作出即时决策以确保安全导航至关重要。MongoDB可以在这些挑战面前发挥重要作用。

●MongoDB能够处理大量非结构化数据,是同时容纳传感器读数、远程信息处理、地图和模型结果等各种数据类型的绝佳方式。

●MongoDB支持在运行时随时添加新字段,让开发人员能够轻松地为原始遥测数据添加上下文信息。

●MongoDB的Search提供了一个高性能搜索引擎,允许数据科学家迭代其感知AI模型。

其他用例

AI在实现工业4.0的承诺中发挥着关键作用。MongoDB 还可支持许多其他AI用例,其中包括:

物流优化:AI可以帮助优化路线,从而减少延误并提高日常配送的效率。

质量控制和缺陷检测:在产品生产过程中,计算机或机器视觉可用于识别产品中的异常,确保产品精度达标。

生产优化:通过分析生产线上安装的传感器的时间序列数据,可以识别并减少浪费,从而提高产量和效率。

智能售后支持:制造商可以利用AI驱动的对话机器人和预测分析,为客户提供主动维护、故障排除和个性化帮助等服务。

个性化产品推荐:AI可用于分析用户行为和偏好,通过移动或Web应用提供个性化产品推荐,从而提高客户满意度并促进销售。

AI与制造业和汽车业的融合已经彻底改变了传统流程,为效率和创新带来了大量的机会。借助工业物联网和先进的分析技术,企业现在可以利用大量数据来加强库存管理和预测性维护。AI驱动的需求预测可确保最佳库存水平,而预测性维护技术可最大限度地减少停机时间并优化设备性能。

此外,随着汽车制造商对实现自动驾驶的投入,AI驱动的图像识别和实时数据分析能力变得至关重要。MongoDB 是一个有效的解决方案,通过提供灵活的文档建模和强大的存储功能,应对工业 4.0 的复杂问题。

除制造业和汽车行业外,MongoDB 具备的AI潜力还可扩展到物流优化、质量控制、生产效率、智能售后支持和个性化客户体验等领域,从而塑造工业 4.0 及更远的未来。

以上是本篇的全部内容,在本系列的下一篇文章中,我们将讨论MongoDB+AI在电信和媒体行业的应用。敬请持续关注MongoDB数据平台官方公众号。

敬请期待阿里云MongoDB 的检索和向量新特性


👉点击访问 MongoDB中文官网
👉立即免费试用 MongoDB Atlas
☎️需要支持?欢迎联系我们:400-8662988
✅欢迎关注MongoDB微信订阅号(MongoDB-China),及时获取最新资讯。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/11461.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CDN的工作原理及流程

CDN(Content Delivery Network,内容分发网络)是一种构建在数据网络上的分布式内容分发网络。 CDN利用全局负载均衡技术,将用户的访问请求指向离用户最近且工作正常的流媒体服务器上,由流媒体服务器直接响应用户的请求…

Tableau学习2.0版——复习

官网下载链接:https://www.tableau.com/zh-cn/support/releases 学生账户申请链接:https://www.tableau.com/zh-cn/academic/students。直接去学信网下载学籍在线验证作为申请证明。 目录 1、可视化原理 2、基础图表制作 2.1 对比分析(比…

@游戏行业er!MongoDB广州线下沙龙邀您报名!

随着游戏和应用程序的发展,数据变得越来越重要。在为您的下一个游戏选择数据库时,数据库管理者常常会面对灵活性、可扩展性、可靠性、运营效率等问题或挑战。 MongoDB在游戏开发领域有着广泛的应用,灵活数据模型可以存储和处理各种类型的数据…

JPA ENTITY EXTEND

1. Overview Relational databases don’t have a straightforward way to map class hierarchies onto database tables. To address this, the JPA specification provides several strategies: MappedSuperclass – the parent classes, can’t be entitiesSingle Table …

webpack处理js和css模块化导入导出示例:

webpack默认并不能处理js模块化的导入和导出,依赖于ts-loader和babel-loader webpack.config,js module.exports {entry: ./src/index.ts,output: {filename: main.js,},mode: development, // 或者 productionmodule: {rules: [{test: /\.ts/,exclude: /(node_modules)/,use:…

二维平移矩阵 (2D translate matrix)

2D translate matrix 推荐阅读正文推荐阅读 矢量旋转矩阵 正文 之前我们介绍了矢量旋转矩阵的形式,这里我们来介绍一下平移矩阵的形式。比如,我们我们有一个点,其坐标为 (0,1)。那么我们如何操作才能够将这个点沿着 x 轴正方向平移 1 个单位长度呢? 这里我们以向右移动…

vj题单 P4552 [Poetize6] IncDec Sequence

思路: 一次操作:选一个区间[l, r],把这个区间的数都加1或者都减1,可以将求该数列的差分数组b然后来进行该操作 一次操作的两种种情况:(l可以等于r) 1.b[l]1 b[r1]-1 2.b[l]-1 b[r1]1 Q1:…

PHP 提取数组中的特定的值

需求: 前端展示: (1)之前的页面: (2)修改后的页面: 之前接口返回的数据 : 解决办法:提取tags 中的 ’约 的数组 添加到一个新的数组中去 1:一开…

【CPP】多线程并发—— Mutex 和 Lock

#include <iostream> #include <thread> #include <mutex> #include "my_utils.h"std::mutex mtx; // 全局互斥锁 int shared_data 0; // 共享数据 void increment() { for (int i 0; i < 10; i) { std::cout <<"incre…

2024年去除视频水印的5种方法

如果你从事电影剪辑或者视频编辑工作&#xff0c;你经常需要从优酷、抖音、TikTok下载各种视频片段……。 通常这些视频带有水印和字幕。一些免费软件如CapCut、canva、Filmora也会给你制作的视频打上水印&#xff0c;这些水印嵌入在视频内部。 2024年去除视频水印的5种方法 …

Mysql-用户变量的声明与使用

#声明变量 #1.标识符不能以数字开头 #2.只能使用_或$符号&#xff0c;不能使用其他符号 #3.不能使用系统关键字 setuserName刘德华; select userName:刘青云;#将赋值与查询结合 #查询变量、使用变量&#xff0c;匿名的时候建议加上as select userName as 读取到的userName变量…

Golang面向对象编程(二)

文章目录 封装基本介绍封装的实现工厂函数 继承基本介绍继承的实现字段和方法访问细节多继承 封装 基本介绍 基本介绍 封装&#xff08;Encapsulation&#xff09;是面向对象编程&#xff08;OOP&#xff09;中的一种重要概念&#xff0c;封装通过将数据和相关的方法组合在一起…

java JOptionPane 介绍

JOptionPane是Java Swing库中的一个类,用于创建对话框(Dialogs),以便与用户进行交互。它提供了一种简单的方式来显示消息、警告、错误、输入框等。 主要方法: showMessageDialog(Component parentComponent, Object message):显示一个包含消息的对话框。showInputDialog…

2024OD机试卷-手机App防沉迷系统 (java\python\c++)

题目:手机App防沉迷系统 题目描述 智能手机方便了我们生活的同时,也侵占了我们不少的时间。 “手机App防沉迷系统”能够让我们每天合理地规划手机App使用时间,在正确的时间做正确的事。 它的大概原理是这样的: 在一天24小时内,可以注册每个App的允许使用时段一个时间段只…

Java转Kotlin调用JNI方法异常

一、背景 Java调用JNI方法时没有任何问题&#xff0c;但是使用Java转Kotlin以后出现了崩溃异常&#xff1a;A java_vm_ext.cc:597] JNI DETECTED ERROR IN APPLICATION: jclass has wrong type: 校验参数后没有任何变化&#xff0c;经过分析验证找到解决方案 二、原因…

若依生成树表和下拉框选择树表结构(在其他页面使用该下拉框输入)

1.数据库表设计 生成树结构的主要列是id列和parent_id列&#xff0c;后者指向他的父级 2.来到前端代码生成器页面 导入你刚刚写出该格式的数据库表 3.点击编辑&#xff0c;来到字段 祖籍列表是为了好找到直接父类&#xff0c;不属于代码生成器方法&#xff0c;需要后台编…

【XSRP软件无线电】基于软件无线电平台的QPSK频带通信系统设计

目录&#xff1a; 目录&#xff1a; 一、绪论 1.1 设计背景 1.2 设计目的 二、系统总体方案 2.1 专题调研题目 2.2 调研背景 2.3 设计任务解读 2.4 设计原理 2.4.1 原理框图 2.4.2 功能验证 三、软件设计 3.1 程序解读 3.2 程序设计 3.3 仿真结果&#xff1a; 四、程序代码分析…

网络基础-SSH协议(思科、华为、华三)

SSH&#xff08;Secure Shell&#xff09;是一种用于安全远程访问和安全文件传输的协议。它提供了加密的通信通道&#xff0c;使得用户可以在不安全的网络上安全地远程登录到远程主机&#xff0c;并在远程主机上执行命令、访问文件以及传输文件&#xff0c;本篇主要讲解命令执行…

SpringAI集成本地AI大模型ollama(调用篇)非常简单!!

一&#xff0c;前提准备本地ai模型 1&#xff0c;首先需要去ollama官网下载开源ai到本地 网址&#xff1a;Ollama 直接下载到本地&#xff0c;然后启动ollama 启动完成后&#xff0c;我们可以在cmd中执行ollama可以看到相关命令行 2&#xff0c; 下载ai moudle 然后我们需要…

基于C#开发web网页模板流程-登录界面

前言&#xff0c;首先介绍一下本项目将要实现的功能 &#xff08;一&#xff09;登录界面 实现一个不算特别美观的登录窗口&#xff0c;当然这一步跟开发者本身的设计美学相关&#xff0c;像蒟蒻博主就没啥艺术细胞&#xff0c;勉强能用能看就行…… &#xff08;二&#xff09…