公司用于做网站的费用怎么做账/优化推广服务

公司用于做网站的费用怎么做账,优化推广服务,wordpress 评分点评主题,神码ai智能写作网站模型评估:对预测函数地预测精度的评估。 多重回归:涉及三个及其以上的变量的回归问题。 评估模型的方法: 交叉验证:将数据集分成测试集和训练集,可以采用3:7或者2:8的比例方式进行划分&#xff…

模型评估:对预测函数地预测精度的评估。

多重回归:涉及三个及其以上的变量的回归问题。

评估模型的方法:

交叉验证:将数据集分成测试集和训练集,可以采用3:7或者2:8的比例方式进行划分,使用测试集进行对模型的评估,对测试数据计算测试数据的误差的平方,再取其平均值,也就是以前提及的均方差MSE(Mean Square Error,误差越小,精度越高)

TP:True Positive,预测正确(T),实际为正,预测为正

FP:False Positive,预测错误(F),实际为负,预测为正

TN:True Negative,预测正确(T),实际为负,预测为负

FN:False Negative,预测错误(F),实际为正,预测为负

分类准确率公式:其值越高,则模型精度越高,意味着模型越好(在数据量平衡的情况下)
 

如何在不考虑数据量是否均衡的情况下,使得其能更好评估模型,这就涉及精确率公式:

该值越高,说明被错误分类的样本越少

同时还有另外一个评估模型的指标公式,其为召回率Recall:

三个公式总结图:

所以一般评估模型采用分类准确率acc、精确率P、召回率R来综合来评价一个模型。但是一般来说,精确率P和召回率R会一个高一个低,需要对其进行取舍。所以为了更为全面的评估一个模型的好坏,故引入F值,F值是能够综合评定模型性能的指标。F值的公式如下所示:

该F值的公式称为F1值更为准确,因为这是在β权重为1时的公式表达式,F1值为精确率和召回率的调和平均值。其更为普适的公式为Fβ公式

在计算P、R、F值的时,统计的对象可能是TP,也可以是TN。那么我们该如何选择呢?
当面对数据不平衡的情况,使用数据较少的数据集作为统计对象,来计算其对应的P、R、F值。即用数量少的。

K折交叉验证:

不单单可以将数据分成3:7或者2:8,这里有一个K折交叉验证,将全部的数据集划分为K份,将K-1份数据作为训练数据,剩下的一份作为测试数据,然后每次更好训练数据和测试数据,重复K次交叉验证。再最后计算K个精度的平均值,作为其最终的精度。

那么K折交叉验证的K值的确定怎么设定合适呢?

设定过大,会增加时间的耗费。所以只能尽可能凭借经验确定一个合适的K值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/72438.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM 2015/3/15

定义:Java Virtual Machine -java程序的运行环境(java二进制字节码的运行环境) 好处: 一次编写,到处运行 自动内存管理,垃圾回收 数组下标越界检测 多态 比较:jvm/jre/jdk 常见的JVM&…

Compose 实践与探索九 —— DrawModifier 解析

本篇讲解 DrawModifier 的基本用法与代码原理,介绍原理的目的在于可以判断绘制与绘制的关系,绘制与布局的关系。知道达成某种绘制效果应该怎么写,面对复杂的 Modifier 链时对效果有大致预判。 DrawModifier 管理绘制,需要以负责管…

华为手机助手输入连接码时光标乱跳

问题复现:输入12345678,光标自动跳转导致连接码出现乱序情况。 千万别试着找出规律,已试动态规律非大牛误轻试 问题原因: 想啥呢?华哥的软件又不是我开发我要Know Why干啥 我只需关心解决方案 (可能时输入…

Windows 11 安装Docker Desktop环境

1、确认CPU开启虚拟化 打开任务管理器,切换到“性能”选项卡,查看 CPU 信息。若“虚拟化”状态显示为“已启用”,则表示虚拟化已开启;若显示为“已禁用”,则需要在启动时进入 BIOS 开启虚拟化设置(若显示已…

STM32如何精准控制步进电机?

在工业自动化、机器人控制等场合,步进电机以其高精度、开环控制的特性得到了广泛应用。而在嵌入式系统中,使用STM32进行步进电机的精确控制,已成为开发者的首选方案之一。 本文将从嵌入式开发者的角度,深入探讨如何基于STM32 MCU…

【 <一> 炼丹初探:JavaWeb 的起源与基础】之 JavaWeb 项目的部署:从开发环境到生产环境

<前文回顾> 点击此处查看 合集 https://blog.csdn.net/foyodesigner/category_12907601.html?fromshareblogcolumn&sharetypeblogcolumn&sharerId12907601&sharereferPC&sharesourceFoyoDesigner&sharefromfrom_link <今日更新> 一、开发环境…

算法题(98):大数加法

审题&#xff1a; 本题需要我们解决大数加法&#xff0c;大数直接运算会超出范围&#xff0c;所以我们需要转换成字符串一位位进行计算 思路&#xff1a; 方法一&#xff1a;高精度加法 我们将两个大数的每一个位分别计算&#xff0c;然后头插到answer字符串中即可 解题&#x…

C# Exe + Web 自动化 (BitComet 绿灯 自动化配置、设置)

BitComet GreenLight,内网黄灯转绿灯 (HighID), 增加p2p连接率提速下载-CSDN博客 前两天写个这个&#xff0c;每次开机关机后要重来一遍很麻烦的索性写个自动化。 先还是按照上面的教程自己制作一遍&#xff0c;留下Luck 以及 路由器相关的 端口记录信息。 &#xff08;因为自…

python---序列 (str,list,tuple)

一、 序列类型入门 python的数据类型&#xff1a;int float bool str 运算符 - * / % > < and or not 流程控制ifelsewhilefor掌握python的2大容器类型数值类型&#xff08;3个&#xff09;&#xff1a;int float bool序列类型容器(3个)&#xff1a;str &#xff1a; …

CSS元素层叠顺序规则

CSS元素层叠顺序规则 看图说话总结: background/borderz-index(<0)blockfloatinline/inline-blockz-index(0,auto)z-index (>0)

ArcGIS Pro将有文字标注底图切换为无标注底图(在线地图图源)

今天介绍一下在ArcGIS Pro将有标注的地形底图换成无标注的底图。 大家在这项目底图时候会经常调用ArcGIS Pro自带的地形图&#xff0c;但是这个地形图自带是有注记的&#xff0c;如下图。 如何更改&#xff0c;才可以调用无文字注记的呢&#xff1f; 对于一个已经切好图的有注记…

Xxl-Job学习笔记

目录 概述 核心架构 核心特点 应用场景 什么是任务调度 快速入门 获取源码 初始化调度数据库 基本配置 数据源datasource 邮箱email&#xff08;可选&#xff09; 会话令牌access token 启动调度中心 启动执行器 依赖 yaml基本配置 XxlJobConfig类配置 定义执…

让双向链表不在云里雾里

又来博客留下我的足迹了&#xff0c;哈哈哈&#xff0c;这次是对于双向链表的理解 目录 创建双向链表&#xff1a; 申请结点&#xff1a; 双向链表初始化&#xff1a; 双向链表插入结点&#xff1a; 双向链表删除结点&#xff1a; 双向链表的打印&#xff1a; 双向链表…

前端工程化之前端工程化详解 包管理工具

前端工程化详解 & 包管理工具 前端工程化什么是前端工程化前端工程化发展脚手架能力 体验度量规范流程效能流程扭转 稳定性建设针对整体稳定性建设 可监控&#xff1a;前端监控系统 包管理工具npm包详解package.jsonname 模块名description 模块描述信息keywords&#xff1…

《Python实战进阶》No24: PyAutoGUI 实现桌面自动化

No24: PyAutoGUI 实现桌面自动化 摘要 PyAutoGUI 是一个跨平台的桌面自动化工具&#xff0c;能够模拟鼠标点击、键盘输入、屏幕截图与图像识别&#xff0c;适用于重复性桌面任务&#xff08;如表单填写、游戏操作、批量文件处理&#xff09;。本集通过代码截图输出日志的实战形…

一周学会Flask3 Python Web开发-SQLAlchemy查询所有数据操作-班级模块

锋哥原创的Flask3 Python Web开发 Flask3视频教程&#xff1a; 2025版 Flask3 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili 我们来新建一个的蓝图模块-班级模块&#xff0c;后面可以和学生模块&#xff0c;实现一对多的数据库操作。 blueprint下新建g…

Neural Architecture Search for Transformers:A Survey

摘要 基于 Transformer 的深度神经网络架构因其在自然语言处理 (NLP) 和计算机视觉 (CV) 领域的各种应用中的有效性而引起了极大的兴趣。这些模型是多种语言任务&#xff08;例如情绪分析和文本摘要&#xff09;的实际选择&#xff0c;取代了长短期记忆 (LSTM) 模型。视觉 Tr…

TCP 全连接队列 内核层理解socket

TCP 全连接队列 理解 listen 的第二个参数 int listen(int sockfd, int backlog);backlog 参数表示 全连接队列&#xff08;accept 队列&#xff09;的最大长度。 那什么是全连接队列呢&#xff1f; 三次握手 & accept() 处理流程 客户端发送 SYN&#xff0c;服务器收到并…

OpenEuler-22.03-LTS上利用Ansible轻松部署MySQL 5.7

一、需求 使用ansible自动化部署mysql二进制部署mysql部署mysql并创建JDBC用户 二、环境信息 本文涉及的代码&#xff0c;配置文件地址&#xff1a; 链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;1g6y 软件名称版本备注Ansible2.9.27All modules — Ansible Doc…

基于javaweb的SpringBoot农资商城购物商城系统设计与实现(源码+文档+部署讲解)

技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论…