早教网站模板/拼多多seo 优化软件

早教网站模板,拼多多seo 优化软件,介绍自己做的电影网站,公司在百度做网站在复杂系统的设计、决策与优化问题中,常常需要同时兼顾多个相互冲突的目标,多目标粒子群优化(MOPSO)算法应运而生,作为群体智能优化算法家族中的重要成员,它为解决此类棘手难题提供了高效且富有创新性的解决…

在复杂系统的设计、决策与优化问题中,常常需要同时兼顾多个相互冲突的目标,多目标粒子群优化(MOPSO)算法应运而生,作为群体智能优化算法家族中的重要成员,它为解决此类棘手难题提供了高效且富有创新性的解决方案。

粒子初始化:在算法起始阶段,根据待优化问题的维度,在可行解空间内随机初始化粒子的位置和速度,这些初始粒子代表了问题的初始潜在解,为后续搜索奠定基础。

适应度评估:针对每个粒子所处的位置(即对应的解),依据预先设定的多个目标函数进行适应度评估。例如,在产品设计中,一个目标可能是成本最低,另一个目标是性能最优,通过计算各粒子在这两个及更多目标上的表现,确定其优劣程度,这里的优劣并非绝对,而是相对其他粒子而言的非劣性判断。

个体最优与群体最优更新:粒子在飞行过程中,对比自身当前位置的适应度与历史最优位置的适应度,若当前位置更优,则更新个体最优;同时,在群体层面,比较所有粒子的适应度,找出群体最优粒子。对于多目标问题,个体最优与群体最优通常采用特殊的存档机制,以保存多个非劣解,而非单一最优解。

速度与位置更新:依据粒子的个体最优、群体最优以及预设的速度更新公式,计算粒子的新速度,进而更新粒子的位置。在这一过程中,为避免粒子陷入局部最优,还会引入随机扰动项或采用自适应策略,调节粒子的探索与开发能力,促使粒子持续向帕累托前沿靠近。

终止条件判断:不断重复上述步骤,直至满足设定的终止条件,如达到最大迭代次数、解集的收敛程度达到要求或计算资源耗尽等,此时得到的粒子解集即为多目标粒子群优化算法的输出结果,这个结果包含了一系列在多个目标上取得较好平衡的解。

全局搜索能力:MOPSO 算法借助粒子群体的协作与信息共享,能够在较大的搜索空间内广泛探索,不易陷入局部最优,相比一些传统的确定性优化算法,更有可能找到全局最优或接近全局最优的解集。

算法简单高效:相较于其他复杂的多目标优化算法,MOPSO 基于直观的粒子运动模拟,原理易于理解,实现相对简单,计算效率较高,不需要复杂的数学推导与求解过程,在实际应用中便于快速部署。

多目标平衡:能够有效地平衡多个相互冲突的目标,通过合理设置目标函数和优化参数,为决策者提供兼顾不同需求的优化方案,适应现实世界中复杂的决策场景。

应用领域

工程设计:在机械设计、电子电路设计、建筑结构设计等领域,面临着成本、性能、可靠性等多个目标的权衡。MOPSO 算法可帮助工程师快速筛选出满足不同要求的设计方案,如在汽车发动机设计中,同时优化燃油效率、动力输出和排放指标。

经济管理:在投资组合优化问题上,投资者需要平衡风险与收益,MOPSO 算法通过考虑不同资产的风险收益特征,为投资者构建最优的投资组合,实现收益最大化的同时将风险控制在可接受范围内。

物流配送:物流企业需要在配送成本、配送时间、客户满意度等多方面寻求平衡。MOPSO 算法可用于规划最优配送路线,确定最佳配送车辆数量和载重分配,提高物流运营效率。

环境科学:在水资源管理、污染物减排等问题上,涉及经济成本、环境效益等多个目标。MOPSO 算法可协助制定合理的政策和方案,实现可持续发展,如优化污水处理厂的运行参数,在降低处理成本的同时确保水质达标。

clear all; clc;% Multi-objective function
%MultiObjFnc = 'Schaffer';
%MultiObjFnc = 'Kursawe';
MultiObjFnc = 'Poloni';
%MultiObjFnc = 'Viennet2';
%MultiObjFnc = 'Viennet3';
%MultiObjFnc = 'ZDT1';
%MultiObjFnc = 'ZDT2';
%MultiObjFnc = 'ZDT3';
%MultiObjFnc = 'ZDT6';switch MultiObjFnccase'Schaffer'         % SchafferMultiObj.fun = @(x) [x(:).^2, (x(:)-2).^2];MultiObj.nVar = 1;MultiObj.var_min = -5;MultiObj.var_max = 5;load('Schaffer.mat');MultiObj.truePF = PF;case'Kursawe'          % Kursawe MultiObj.fun = @(x) [-10.*(exp(-0.2.*sqrt(x(:,1).^2+x(:,2).^2)) + exp(-0.2.*sqrt(x(:,2).^2+x(:,3).^2))), ...sum(abs(x).^0.8 + 5.*sin(x.^3),2)];MultiObj.nVar = 3;MultiObj.var_min = -5.*ones(1,MultiObj.nVar);MultiObj.var_max = 5.*ones(1,MultiObj.nVar);load('Kursawe.mat');MultiObj.truePF = PF;case'Poloni'           % Poloni's two-objectiveA1 = 0.5*sin(1)-2*cos(1)+sin(2)-1.5*cos(2);A2 = 1.5*sin(1)-cos(1)+2*sin(2)-0.5*cos(2);B1 = @(x,y) 0.5.*sin(x)-2.*cos(x)+sin(y)-1.5.*cos(y);B2 = @(x,y) 1.5.*sin(x)-cos(x)+2.*sin(y)-0.5.*cos(y);f1 = @(x,y) 1+(A1-B1(x,y)).^2+(A2-B2(x,y)).^2;f2 = @(x,y) (x+3).^2+(y+1).^2;MultiObj.fun = @(x) [f1(x(:,1),x(:,2)), f2(x(:,1),x(:,2))];MultiObj.nVar = 2;MultiObj.var_min = -pi.*ones(1,MultiObj.nVar);MultiObj.var_max = pi.*ones(1,MultiObj.nVar);case 'Viennet2'         % Viennet2f1 = @(x,y) 0.5.*(x-2).^2+(1/13).*(y+1).^2+3;f2 = @(x,y) (1/36).*(x+y-3).^2+(1/8).*(-x+y+2).^2-17;f3 = @(x,y) (1/175).*(x+2.*y-1).^2+(1/17).*(2.*y-x).^2-13;MultiObj.fun = @(x) [f1(x(:,1),x(:,2)), f2(x(:,1),x(:,2)), f3(x(:,1),x(:,2))];MultiObj.nVar = 2;MultiObj.var_min = [-4, -4];MultiObj.var_max = [4, 4];load('Viennet2.mat');MultiObj.truePF = PF;case 'Viennet3'         % Viennet3f1 = @(x,y) 0.5.*(x.^2+y.^2)+sin(x.^2+y.^2);f2 = @(x,y) (1/8).*(3.*x-2.*y+4).^2 + (1/27).*(x-y+1).^2 +15;f3 = @(x,y) (1./(x.^2+y.^2+1))-1.1.*exp(-(x.^2+y.^2));MultiObj.fun = @(x) [f1(x(:,1),x(:,2)), f2(x(:,1),x(:,2)), f3(x(:,1),x(:,2))];MultiObj.nVar = 2;MultiObj.var_min = [-3, -10];MultiObj.var_max = [10, 3];load('Viennet3.mat');MultiObj.truePF = PF;case 'ZDT1'             % ZDT1 (convex)g = @(x) 1+9.*sum(x(:,2:end),2)./(size(x,2)-1);MultiObj.fun = @(x) [x(:,1), g(x).*(1-sqrt(x(:,1)./g(x)))];MultiObj.nVar = 30; MultiObj.var_min = zeros(1,MultiObj.nVar);MultiObj.var_max = ones(1,MultiObj.nVar);load('ZDT1.mat');MultiObj.truePF = PF;case 'ZDT2'             % ZDT2 (non-convex)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/71532.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python 爬取唐诗宋词三百首

你可以使用 requests 和 BeautifulSoup 来爬取《唐诗三百首》和《宋词三百首》的数据。以下是一个基本的 Python 爬虫示例,它从 中华诗词网 或类似的网站获取数据并保存为 JSON 文件。 import requests from bs4 import BeautifulSoup import json import time# 爬取…

辛格迪客户案例 | 深圳善康医药科技GMP培训管理(TMS)项目

01 善康医药:创新药领域的探索者 深圳善康医药科技股份有限公司自2017年创立以来,便扎根于创新药研发领域,专注于成瘾治疗药物的研究、生产与销售。公司坐落于深圳,凭借自身独特的技术优势与研发实力,在行业内逐渐崭露…

【长安大学】苹果手机/平板自动连接认证CHD-WIFI脚本(快捷指令)

背景: 已经用这个脚本的记得设置Wifi时候,关闭“自动登录” 前几天实在忍受不了CHD-WIFI动不动就断开,一天要重新连接,点登陆好几次。试了下在网上搜有没有CHD-WIFI的自动连接WIFI自动认证脚本,那样我就可以解放双手&…

Vue+el-upload配置minIO实现大文件的切片并发上传、上传进度展示、失败重试功能

vue3el-upload实现切片上传 效果图 初始界面 上传中的界面 上传完成的界面 上传失败的界面 <template><div><el-uploadclass"BigFileUpload"ref"uploadRef"action"#"drag:show-file-list"false":on-change"…

Kubespray部署企业级高可用K8S指南

目录 前言1 K8S集群节点准备1.1 主机列表1.2 kubespray节点python3及pip3准备1.2.1. 更新系统1.2.2. 安装依赖1.2.3. 下载Python 3.12源码1.2.4. 解压源码包1.2.5. 编译和安装Python1.2.6. 验证安装1.2.7. 设置Python 3.12为默认版本&#xff08;可选&#xff09;1.2.8. 安装pi…

审批流AntV框架蚂蚁数据可视化X6饼图(注释详尽)

大家好&#xff0c;这次使用的是AntV的蚂蚁数据可视化X6框架&#xff0c;类似于审批流的场景等&#xff0c;代码如下&#xff1a; X6框架参考网址&#xff1a;https://x6.antv.vision/zh/examples/showcase/practices#bpmn 可以进入该网址&#xff0c;直接复制下方代码进行调试…

用于管理 Elasticsearch Serverless 项目的 AI Agent

作者&#xff1a;来自 Elastic Fram Souza 由自然语言驱动的 AI 代理&#xff0c;可轻松管理 Elasticsearch Serverless 项目 - 支持项目创建、删除和状态检查。 这个小型命令行工具让你可以用简单的英语管理你的无服务器 Elasticsearch 项目。它通过AI&#xff08;这里是 Ope…

通过计费集成和警报监控 Elasticsearch Service 成本

作者&#xff1a;来自 Elastic Alexis Charveriat 使用 Elasticsearch 服务计费集成来跟踪、定制和提醒 Elasticsearch 服务费用。 监控和管理你的Elasticsearch服务&#xff08;ESS&#xff09;使用情况和成本对高效运营至关重要。 Elasticsearch服务计费集成提供了一种简化的…

【第12节】C++设计模式(结构型模式)-Proxy(代理)模式

一、问题背景 使用 Proxy 模式优化对象访问 在某些情况下&#xff0c;直接访问对象可能会导致性能问题或安全性问题。Proxy 模式&#xff08;代理模式&#xff09;通过引入一个代理对象来控制对原始对象的访问&#xff0c;从而解决这些问题。以下是几种典型的应用场景&#xf…

Python-07PDF转Word

2025-03-04-PDF转Word DeepSeek等大模型从来都不是简单的写一个静态博客这么肤浅&#xff08;太多博主都只讲这个内容了&#xff09;借助全网大神的奇思妙想&#xff0c;拓展我狭隘的思维边界。 文章目录 2025-03-04-PDF转Word [toc]1-参考网址2-学习要点3-核心逻辑4-核心代码 …

XTDrone+Mavros+Gazebo仿真——配置与控制不同的无人机

参考资料为XTDrone官方文档&#xff1a; 配置与控制不同的无人机 语雀XTDrone目前支持多旋翼飞行器&#xff08;multiroto...https://www.yuque.com/xtdrone/manual_cn/vehicle_config# 1、修改无人机机型为solo 以outdoor3.launch为例&#xff0c;讲解如何配置不同的机型 …

快速熟悉JavaScript

目录 1.js的基本认知 2.js的基本语法 2.1 变量的声明 三个关键字的区别 2.2数据类型 2.2.1 基本数据类型 2.2.2 复杂数据类型 2.3对象的属性和方法 2.3.1属性 2.3.2访问方式 2.4.3动态操作 2.4.4方法 2.4字符串的常用属性和方法 2.5运算符 2.6逻辑控制语句 2.7函…

perl初试

我手头有一个脚本&#xff0c;用于从blastp序列比对的结果文件中&#xff0c;进行文本处理&#xff0c; 获取序列比对最优的hit记录 #!/usr/bin/perl -w use strict;my ($blast_out) ARGV; my $usage "This script is to get the best hit from blast output file wit…

unity6 打包webgl注意事项

webgl使用资源需要异步加载 使用localization插件时要注意&#xff0c;webgl不支持WaitForCompletion&#xff0c;LocalizationSettings.InitializationOperation和LocalizationSettings.StringDatabase.GetTable都不能用 web里想要看到具体的报错信息调试开启这两个&#xf…

Three.js 入门(基础材质、贴图、纹理、环境、遮蔽光、透明度、高光贴图)

本篇主要学习内容 : three常用的几种材质环境贴图、贴图、环境光、遮蔽光、透明度、高光贴图&#xff08;纹理贴图&#xff09; 点赞 关注 收藏 学会了 1.three常用的几种材质 1.1&#xff09; 基础网格材质MeshBasicMaterial、漫反射网格材质MeshLambertMaterial、高光…

【大模型安全】大模型的技术风险

【大模型安全】大模型的技术风险 1.DDoS攻击2.常见的传统网络攻击方式3.恶意意图的识别4.AI生成虚假信息传播5.利用AI进行黑客攻击6.模型对抗攻击7.后门攻击8.Prompt攻击9.数据投毒攻击10.模型窃取攻击11.数据窃取攻击 1.DDoS攻击 2023年11月9日凌晨&#xff0c;OpenAI在官网公…

C++学习之路,从0到精通的征途:入门基础

目录 一.C的第一个程序 二.命名空间 1.namespace的价值 2.命名空间的定义 3.命名空间使用 三.C的输入与输出 1.<iostream> 2.流 3.std(standard) 四.缺省参数 1.缺省参数的定义 2.全缺省/半缺省 3.声明与定义 ​五.函数重载 1.参数个数不同 2.参数类型不…

本地YARN集群部署

请先完成HDFS的前置部署&#xff0c;部署方式可查看:本地部署HDFS集群https://blog.csdn.net/m0_73641796/article/details/145998092?spm1001.2014.3001.5502 部署说明 组件配置文件启动进程备注Hadoop HDFS需修改 需启动: NameNode作为主节点 DataNode作为从节点 Secondary…

UnrealEngine UE5 可视化 从地球观察火星 金星 土星 运动轨迹

视频参考&#xff1a;https://www.bilibili.com/video/BV1KpXSYdEdo/ 从地球观察土星的运动轨迹 从地球观察火星 轨迹 从地球观察金星的运动轨迹

通用信息抽取大模型PP-UIE开源发布,强化零样本学习与长文本抽取能力,全面适配多场景任务

背景与简介 信息抽取&#xff08;information extraction&#xff09;是指&#xff0c;从非结构化或半结构化数据&#xff08;如自然语言文本&#xff09;中自动识别、提取并组织出结构化信息。通常包含多个子任务&#xff0c;例如&#xff1a;命名实体识别&#xff08;NER&am…