在百度做网站怎么做/站长域名查询工具

在百度做网站怎么做,站长域名查询工具,WordPress文章相似推荐,网络营销策划方案800字一、Swish 函数 Swish 函数是一种较新的激活函数,由 Ramachandran 等人在 2017 年提出,其数学表达式通常为 其中 σ(x) 是 Sigmoid 函数(Logistic 函数)。 如何理解 Swish 函数 自门控特性 Swish 函数可以看作是对输入 x 进行“…

一、Swish 函数

Swish 函数是一种较新的激活函数,由 Ramachandran 等人在 2017 年提出,其数学表达式通常为

其中 σ(x) 是 Sigmoid 函数(Logistic 函数)。

如何理解 Swish 函数

  1. 自门控特性

    • Swish 函数可以看作是对输入 x 进行“自门控”的机制:输入 x 乘以其经过 Sigmoid 函数的值,相当于让 x 自己决定通过的比例。
    • 当 x 较大时,σ(x) 趋近于1,此时 Swish 函数近似为 x;当 x 较小时,σ(x) 会使 x 被适当缩放,从而调整激活值。
  2. 平滑与非单调性

    • Swish 函数是一条平滑、连续且处处可微的曲线。与 ReLU 等激活函数相比,它没有突然的断点。
    • 同时,Swish 函数是非单调的,即在某些区间内函数值可能先增加后减少,这种非单调性有时能够让网络学习到更复杂的特征表示。
  3. 改进训练效果

    • 研究表明,在某些深度学习任务中,使用 Swish 作为激活函数可以比使用 ReLU 带来更好的训练性能和泛化效果。
    • 这种性能提升可能归因于其平滑和非单调的特性,使得梯度传播更加稳定,降低梯度消失或爆炸的风险(参考下面对应的解释)
  4. 扩展形式

    • Swish 函数有一个扩展形式: Swish(x)=x⋅σ(βx), 其中 β是一个可调参数,甚至可以作为可学习参数。不同的 β值会影响激活函数在负区间和正区间的斜率,从而让模型更灵活地适应不同的数据分布。
    • 其中 𝜎(⋅) 为 Logistic 函数,𝛽 为可学习的参数或一个固定超参数。𝜎(⋅) ∈ (0, 1) 可 以看作一种软性的门控机制。当 𝜎(𝛽𝑥) 接近于 1 时,门处于“开”状态,激活函数的 输出近似于 𝑥 本身;当 𝜎(𝛽𝑥) 接近于 0 时,门的状态为“关”,激活函数的输出近似 于0。

      Swish 函数的图示如下:

当𝛽 = 0时,Swish函数变成线性函数𝑥/2;

当𝛽 = 1时,Swish函数在𝑥 > 0 时近似线性,在𝑥 < 0时近似饱和,同时具有一定的非单调性;

当𝛽 → +∞时,𝜎(𝛽𝑥) 趋向于离散的 0-1 函数,Swish 函数近似为 ReLU 函数。

因此,Swish 函数可以看作线性函数和 ReLU 函数之间的非线性插值函数,其程度由参数 𝛽 控制。

举例说明

例子:比较 Swish 与 ReLU 在激活上的差异
假设某神经元计算出的线性组合 x 为 -2, -1, 0, 1, 2。

  • ReLU 的输出:

    • 当 x = -2 或 -1 时,输出0;
    • 当 x = 0 时,输出0;
    • 当 x = 1 时,输出1;
    • 当 x = 2 时,输出2。
  • Swish 的输出(假设 β=1):

    • 当 x = -2 时,σ(−2)≈0.12,输出 −2×0.12≈−0.24;
    • 当 x = -1 时,σ(−1)≈0.27,输出 −1×0.27≈−0.27;
    • 当 x = 0 时,σ(0)=0.5,输出 0×0.5=0;
    • 当 x = 1 时,σ(1)≈0.73,输出 1×0.73≈0.731;
    • 当 x = 2 时,σ(2)≈0.88,输出 2×0.88≈1.762 。

从上面可以看出,与 ReLU 相比,Swish 函数在负数区域并不是完全为0,而是保留了负值(尽管较小),而在正数区域输出接近于线性。这样的行为使得网络在训练过程中能保留更多信息,梯度传播更平滑。

Swish 函数将输入 x 与 Sigmoid 函数 σ(x) 的输出相乘,实现了一个平滑且非单调的激活函数。这种设计不仅允许网络在负区域保留部分信息,还提供了平滑的梯度,有助于稳定训练过程并提高模型的泛化能力。其扩展形式中引入的参数 β 进一步增强了模型适应数据的灵活性。

梯度消失或爆炸的风险

梯度消失(Vanishing Gradient)和梯度爆炸(Exploding Gradient)是深度神经网络训练中常见的两大问题,主要与反向传播过程中的梯度计算方式(链式法则)有关。它们会导致模型无法有效学习或训练不稳定。以下是它们的定义、原因及影响:

1. 梯度消失(Vanishing Gradient)

  • 定义:在反向传播过程中,梯度(损失函数对参数的导数)逐层传递时逐渐减小,甚至趋近于零,导致浅层网络的权重几乎无法更新。

  • 原因

    • 链式法则的连乘效应:梯度通过反向传播逐层计算时,每一层的梯度都会被前一层的梯度相乘。如果每层的梯度值小于1,多次连乘后会指数级趋近于零。

    • 激活函数的选择:例如 Sigmoid 或 Tanh 函数在输入较大时导数接近零(饱和区),导致梯度消失。

  • 后果

    • 浅层网络参数几乎不更新,模型无法学习底层特征。

    • 模型收敛缓慢或完全停止训练,性能显著下降。

2. 梯度爆炸(Exploding Gradient)

  • 定义:梯度在反向传播过程中逐层增大,最终导致权重更新幅度过大,甚至数值溢出(如 NaN)。

  • 原因

    • 链式法则的连乘效应:如果每层的梯度值大于1,多次连乘后会指数级增长。

    • 权重初始化不当:例如初始权重过大,或网络层数过深。

  • 后果

    • 参数更新不稳定,损失剧烈震荡甚至发散。

    • 权重值变为 NaN,训练完全失败。

3. 为什么梯度问题危害大?

  • 深层网络更脆弱:网络层数越多,梯度连乘的效应越明显,问题越严重。

  • 影响模型表达能力:梯度消失导致浅层无法学习,深层网络退化为浅层网络。

  • 训练效率低下:需要更复杂的调参(如学习率调整)或更长的训练时间。

4. 常见解决方案

  1. 激活函数改进

    • 使用 ReLU、Leaky ReLU 等非饱和激活函数,避免梯度消失。

  2. 权重初始化

    • 使用 Xavier初始化 或 He初始化,根据激活函数调整初始权重的分布。

  3. 归一化技术

    • 批量归一化(Batch Normalization):缓解梯度对参数尺度的依赖。

  4. 残差结构(ResNet)

    • 通过跳跃连接(Skip Connection)绕过梯度消失的层,直接传递梯度。

  5. 梯度裁剪(Gradient Clipping)

    • 对过大的梯度设定阈值,防止梯度爆炸(常用于RNN)。

  6. 优化算法

    • 使用 Adam、RMSProp 等自适应优化器,动态调整学习率。

  7. 网络结构设计

    • 在RNN中使用 LSTM 或 GRU,通过门控机制缓解梯度问题。

5.示例说明

  • 梯度消失:一个10层的全连接网络使用 Sigmoid 激活函数,反向传播时梯度可能在第5层之后趋近于零,导致前5层无法更新。

  • 梯度爆炸:一个未做梯度裁剪的RNN模型,在长序列训练时梯度可能迅速增大,导致参数溢出。

二、GELU 函数

GELU(Gaussian Error Linear Unit,高斯误差线性单元)也是一种通过门控机制来调整其输出值的激活函数,和 Swish 函数比较类似。

GELU(Gaussian Error Linear Unit,正态误差线性单元)是一种激活函数,它将输入值 x 与 x 取正态累积分布函数(CDF)的值相乘,从而实现非线性变换。其数学表达式通常写为:

其中,Φ(x) 是标准正态分布的累积分布函数,表示一个标准正态随机变量小于 x 的概率。

𝜇, 𝜎 为超参数,一般设 𝜇 = 0, 𝜎 = 1 即可。由于高斯分布的累积分布函数为 S 型函数,因此 GELU 函数可 以用 Tanh 函数或 Logistic 函数来近似,

为了便于计算,实际应用中常使用以下近似公式:

或                         GELU(𝑥) ≈ 𝑥𝜎(1.702𝑥).

当使用 Logistic 函数来近似时,GELU 相当于一种特殊的 Swish 函数。

(参考下面第三部分,概率密度函数和累积分布函数的概念)

如何理解 GELU 函数

  1. 概率视角

    • GELU 函数的核心思想是“概率性激活”:将输入 x 与其“被激活”的概率(由正态累积分布 Φ(x) 表示)相乘。这意味着,一个神经元的激活不仅依赖于输入的大小,还依赖于该输入在统计意义上有多大可能被视为“正向贡献”。
  2. 平滑性和非线性

    • 与 ReLU 相比,GELU 是一种平滑且处处可微的函数,没有硬性截断,从而有助于梯度更平稳地传递,降低梯度消失的风险。
    • 同时,GELU 是非单调的(在某些区间内可能出现非单调性),这种特性使得网络可以捕捉更复杂的模式。
  3. 实际应用中的优势

    • 在许多自然语言处理和计算机视觉任务中,GELU 函数表现出比 ReLU 更好的性能。例如,BERT 和其他 Transformer 模型中就使用了 GELU 作为激活函数,因为它能更细腻地调节信息流。

举例说明

例子:Transformer 中的 GELU
在 Transformer 模型中,隐藏层通常使用 GELU 激活函数来处理输入。假设某层神经元计算得到一个值 x:

  • 当 x 较大时,Φ(x) 接近于1,因此 GELU 输出近似于 x;
  • 当 x 较小或为负时,Φ(x) 会相应较小,从而使输出趋于较小的值或接近于0。

这种设计允许模型在处理不同尺度的输入时,能根据统计概率自动调节激活程度,从而捕捉更多细微特征,提高模型的表现。

GELU 函数通过将输入与正态累积分布的概率相乘,实现了一种基于概率视角的平滑激活机制。它既能保留输入的线性特性,又能通过平滑非线性变换提供更稳定的梯度传递和更强的表达能力,这使得它在现代深度学习模型中(如 Transformer)得到广泛应用。

三、附加:概率密度函数、累积分布函数的区别和联系

概率密度函数(PDF)累积分布函数(CDF)是描述随机变量分布的重要工具,它们既有区别又密切相关:

区别

  1. 定义不同

    • 概率密度函数(PDF)
      适用于连续随机变量。它描述了随机变量在某个取值附近出现的“相对可能性”。注意,单个点的 PDF 值本身不是概率,必须通过积分计算某个区间内的概率。例如,对于连续随机变量 X,其 PDF 表示为 f(x),某个区间 [a, b] 内的概率为

    • 累积分布函数(CDF)
      表示随机变量小于或等于某个特定值的概率。对于随机变量 X,其 CDF 表示为 F(x),定义为

      CDF 对于连续和离散随机变量都适用,且其取值范围在 [0, 1]。

  2. 数值与物理意义

    • PDF
      描述的是相对密度,给出的是“密度”而不是直接的概率值。比如,f(x) 的值可能大于1,但只要积分结果在某个区间内小于1,就表示该区间内的概率。

    • CDF
      直接反映概率。它是一个从 −∞到 +∞单调非减的函数,且满足 F(−∞)=0 和 F(+∞)=1。

联系

  1. 数学关系
    对于连续随机变量,CDF 和 PDF 之间存在密切联系:

    • 积分关系
      CDF 是 PDF 的积分,即
    • 微分关系
      如果 CDF F(x) 在 x 处可导,那么其导数就是 PDF:
  2. 用途上的互补

    • 使用 PDF,我们可以分析随机变量在某个区间的“密度”或“强度”,并通过积分得到区间概率。
    • 使用 CDF,我们可以直接了解随机变量在某个值以下的累积概率,这在统计推断和概率计算中非常直接和方便。

举例说明

例子:标准正态分布

从这个例子可以看出,CDF 给出了累积概率,而 PDF 则描述了概率“分布的浓度”。

总结

  • 概率密度函数(PDF):描述连续随机变量在各个点附近的相对概率密度,需要通过积分才能得到具体区间的概率。
  • 累积分布函数(CDF):直接表示随机变量小于或等于某个值的累计概率,具有直观的概率意义,并且可以通过积分(或求导)与 PDF 互相转换。

理解这两者的区别和联系对于掌握概率分布、进行概率计算以及进行统计推断非常重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/71333.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Lua | 每日一练 (5)

&#x1f4a2;欢迎来到张胤尘的技术站 &#x1f4a5;技术如江河&#xff0c;汇聚众志成。代码似星辰&#xff0c;照亮行征程。开源精神长&#xff0c;传承永不忘。携手共前行&#xff0c;未来更辉煌&#x1f4a5; 文章目录 Lua | 每日一练 (5)题目参考答案浅拷贝深拷贝使用场景…

JavaEE--计算机是如何工作的

一、一台计算机的组成部分 1.CPU&#xff08;中央处理器&#xff09; 2.主板&#xff08;一个大插座&#xff09; 3.内存&#xff08;存储数据的主要模板&#xff09; 4.硬盘&#xff08;存储数据的主要模板&#xff09; 内存和硬盘对比&#xff1a; 内存硬盘读写速度快慢存…

电源测试系统有哪些可以利用AI工具的科技??

AI技术的发展对电源模块测试系统的影响是深远的&#xff0c;不仅协助系统提升了测试效率和精度&#xff0c;还推动了测试方法的创新和智能化。那么在电源测试系统中哪些模块可以利用AI工具实现自动化测试? 1. 自动化测试与效率提升 智能测试流程优化 AI算法可以自动优化测试…

通过多线程同时获取H264和H265码流

目录 一.RV1126 VI采集摄像头数据并同时编码H264、H265的大概流程​编辑​编辑 1.1初始化VI模块&#xff1a; 1.2H264、H265的VENC模块初始化&#xff1a; 1.3VI分别绑定H264的VENC层和H265的VENC层&#xff1a; ​​​​​​​1.4开启H264线程采集H264的VENC数据&#xff…

unity lua属性绑定刷新

我们现在有一个 角色属性类叫heroModel,内容如下,当heroModel中的等级发生变化的时候&#xff0c;我们需要刷新界面显示等级信息&#xff0c;通常我们是在收到等级升级成功的协议的时候&#xff0c;发送一个事件&#xff0c;UI界面接受到这个事件的时候&#xff0c;刷新一下等级…

vscode+vue前端开发环境配置

目录 一、安装Vue二、使用vue新建项目 一、安装Vue 在node.js安装好之后&#xff0c; npm config set registry https://registry.npmmirror.com# 安装vue相关工具&#xff0c;webpack用来项目构建、打包、资源整合等。 npm install webpack -g# 安装vue-cli脚手架 npm insta…

《白帽子讲 Web 安全》之文件操作安全

目录 引言 &#xff08;一&#xff09;文件上传与下载漏洞概述 1.文件上传的常见安全隐患 1.1前端校验的脆弱性与服务端脚本执行危机在文件上传流程中&#xff0c;部分开发者可能会在前端使用 JavaScript 代码对文件后缀名进行简单校验&#xff0c;试图以此阻止非法文件上传…

vector习题

完数和盈数 题目 完数VS盈数_牛客题霸_牛客网 一个数如果恰好等于它的各因子(该数本身除外)之和&#xff0c;如&#xff1a;6321。则称其为“完数”&#xff1b;若因子之和大于该数&#xff0c;则称其为“盈数”。 求出2到60之间所有“完数”和“盈数”。 输入描述&#xff…

cesium+vue3自定义HTML实体弹窗、加高德路网、防实体漂浮、让用户画圆、鹰眼

一、基础使用&#xff1a;Cesium.js基础使用&#xff08;vue&#xff09;-CSDN博客 1、基础路径 为 Cesium 库设置一个全局变量 CESIUM_BASE_URL&#xff0c;用于指定 Cesium 的资源文件&#xff08;如 WebGL shaders、纹理、字体等&#xff09;的 示例场景&#xff1a;假设你…

安全运营的“黄金4小时“:如何突破告警疲劳困局

在当今复杂多变的网络安全环境中&#xff0c;安全团队面临着前所未有的挑战。尤其是面对高级持续性威胁&#xff08;APT&#xff09;时&#xff0c;最初的“黄金4小时”成为决定成败的关键窗口。在这段时间内&#xff0c;快速而准确地响应可以极大地降低损失&#xff0c;然而&a…

[BUUCTF]web--wp(持续更新中)

ps:文章所引用知识点链接&#xff0c;如有侵权&#xff0c;请联系删除 [极客大挑战 2019]EasySQL 题目类型&#xff1a;简单SQL注入 发现是登录页面&#xff0c;用万能登录方法测试&#xff0c;两种语句均能解出flag [极客大挑战 2019]Havefun 题目类型&#xff1a;代码审计…

MySQL数据库的数据类型

1.设置MySQL服务器的默认储存引擎 set default_storage_engineMYISAM2. 数值类型 整数类型 TINYINT&#xff1a;1字节&#xff0c;范围&#xff1a;-128~127&#xff08;有符号&#xff09;&#xff0c;0~255&#xff08;无符号&#xff09;。适用于状态码、布尔值&#xff08…

探秘基带算法:从原理到5G时代的通信变革【四】Polar 编解码(二)

文章目录 2.3.3 极化编码巴氏参数与信道可靠性比特混合生成矩阵编码举例 2.3.4 极化译码最小单元译码串行抵消译码&#xff08;SC译码&#xff09;算法SCL译码算法 2.3.5 总结**Polar 码的优势****Polar 码的主要问题****Polar 码的应用前景** 2.3.6 **参考文档** 本博客为系列…

VirtualBox虚拟机转VM虚拟机

前言&#xff1a;部分靶机只适用于VirtualBox&#xff0c;VM打不开VirtualBox的文件&#xff0c;所以需要进行转换 前置条件&#xff1a;本机已经下载VM和VirtualBox 第一步&#xff1a;文件转换 找到VirtualBox.exe所在位置&#xff0c;启动cmd窗口 文件转换的命令&#xf…

DeepSeek API使用及私有化部署

DeepSeek 大模型概述 DeepSeek 是一款参数量高达 671B 的大语言模型&#xff0c;其模型参数文件规模庞大&#xff0c;即使是经过优化的版本&#xff0c;参数文件也有数十 GB。这种庞大的参数量赋予了 DeepSeek 强大的自然语言处理能力&#xff0c;使其能够处理复杂的语言任务&…

动态扩缩容引发的JVM堆内存震荡:从原理到实践的GC调优指南

目录 一、典型案例&#xff1a;系统发布后的GC雪崩事件 &#xff08;一&#xff09;故障现象 1. 刚刚启动时 GC 次数较多 2. 堆内存锯齿状波动 3. GC日志特征&#xff1a;Allocation Failure &#xff08;二&#xff09;问题定位 二、原理深度解析&#xff1a;JVM内存弹…

IDEA 使用codeGPT+deepseek

一、环境准备 1、IDEA 版本要求 安装之前确保 IDEA 处于 2023.x 及以上的较新版本。 2、Python 环境 安装 Python 3.8 或更高版本 为了确保 DeepSeek 助手能够顺利运行&#xff0c;您需要在操作系统中预先配置 Python 环境。具体来说&#xff0c;您需要安装 Python 3.8 或更高…

vue These dependencies were not found

These dependencies were not found: * vxe-table in ./src/main.js * vxe-table/lib/style.css in ./src/main.js To install them, you can run: npm install --save vxe-table vxe-table/lib/style.css 解决&#xff1a; nodejs执行以下语句 npm install --save vxe-t…

【三.大模型实战应用篇】【4.智能学员辅导系统:docx转PDF的自动化流程】

去年团队庆功宴上,我司CTO端着酒杯过来:“老王啊,咱们现在文档解析做得挺溜了,但老师们总抱怨下载的作业格式乱码…” 我看了眼手机里凌晨三点收到的崩溃警报,把杯里的可乐一饮而尽——得,新的副本又开了。 一、为什么PDF转换比想象中难十倍? 某次用户调研中,数学教研…

安卓基础组件Looper - 03 java层面的剖析

文章目录 workflow工作线程 准备Looper创建LooperActivity主线程其他情况 Looper.prepare()大体流程java申请Loopernew LooperMessageQueue初始化 nativejniNativeMessageQueue Looper.loop()大体流程java获取Looper获取msg&#xff0c;处理msgLooper.loop()Looper.loopOnce &a…