深圳html5网站开发多少钱/病毒什么时候才能消失

深圳html5网站开发多少钱,病毒什么时候才能消失,公司官方网站怎么做,云主机多个网站目录 Redis面试常见问题 如果发生了缓存穿透、击穿、雪崩,该如何解决? 缓存穿透 什么是布隆过滤器? 缓存击穿 缓存雪崩 双写一致性(redis做为缓存,mysql的数据如何与redis进行同步呢?) …

目录

 Redis面试常见问题 

如果发生了缓存穿透、击穿、雪崩,该如何解决?

缓存穿透

什么是布隆过滤器?

缓存击穿

缓存雪崩

双写一致性(redis做为缓存,mysql的数据如何与redis进行同步呢?)

1.若一致性要求高:强一致方案(分布式锁)

2.延时双删

数据的持久化

Redis持久化

RDB的执行原理

AOF执行原理

RDB与AOF对比

​编辑

Redis的数据过期策略有哪些

Redis数据删除策略-惰性删除

Redis数据删除策略-定期删除

Redis的数据淘汰策略有哪些

数据淘汰策略

数据淘汰策略-使用建议


 Redis面试常见问题 

         Redis面试八股主要分为:使用场景问题和如何保障高并发问题。其中使用场景问题包括:

  • Redis的数据持久化策略有哪些
  • 什么是缓存穿透,怎么解决
  • 什么是布隆过滤器
  • 什么是缓存击穿,怎么解决
  • 什么是缓存雪崩,怎么解决
  • redis双写问题
  • Redis分布式锁如何实现
  • Redis实现分布式锁如何合理的控制锁的有效时长
  • Redis的数据过期策略有哪些
  • Redis的数据淘汰策略有哪些

 高并发问题包括:

  • Redis集群有哪些方案
  • 什么是 Redis 主从同步
  • 场景使用Redis是单点还是集群 ? 哪种集群
  • Redis分片集群中数据是怎么存储和读取的
  • redis集群脑裂
  • 怎么保证redis的高并发高可用
  • 事务的命令有哪些
  • Redis是单线程的,但是为什么还那么快? 

如果发生了缓存穿透、击穿、雪崩,该如何解决?

缓存穿透

        缓存穿透是指查询一个一定不存在的数据,由于存储层查不到数据因此不写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,可能导致 DB 挂掉。这种情况大概率是遭到了攻击。解决方案的话,我们通常都会用布隆过滤器来解决它。

解决方案一:缓存空数据,查询返回的数据为空,仍把这个空结果进行缓存(但可能会发生数据库和Redis不一致的问题)

解决方案二:布隆过滤器

什么是布隆过滤器?

        布隆过滤器主要是用于检索一个元素是否在一个集合中。我们当时使用的是Redisson实现的布隆过滤器。它的底层原理是,先初始化一个比较大的数组,里面存放的是二进制0或1。一开始都是0,当一个key来了之后,经过3次hash计算,模数组长度找到数据的下标,然后把数组中原来的0改为1。这样,三个数组的位置就能标明一个key的存在。查找的过程也是一样的。

        布隆过滤器有可能会产生一定的误判,我们一般可以设置这个误判率,大概不会超过5%。其实这个误判是必然存在的,要不就得增加数组的长度。5%以内的误判率一般的项目也能接受,不至于高并发下压倒数据库。

缓存击穿

        缓存击穿的意思是:redis某个热点key过期或者刚开始,但是此时有大量的用户访问该过期key(或者大并发场景下刚开始这个数据只在数据库里不在缓存里),这个时候大并发的请求可能会瞬间把 DB 压垮。

  解决方案有两种方式:

  • 第一,可以使用互斥锁:当缓存失效时,不立即去load db,先使用如 Redis 的 SETNX 去设置一个互斥锁。当操作成功返回时,再进行 load db的操作并回设缓存,否则重试get缓存的方法。

  • 第二种方案是设置当前key逻辑过期,大概思路如下:

1) 在设置key的时候,设置一个过期时间字段一块存入缓存中,不给当前key设置过期时间;

2) 当查询的时候,从redis取出数据后判断时间是否过期;

3) 如果过期,则开通另外一个线程进行数据同步,当前线程正常返回数据,这个数据可能不是最新的。

总结,两种方案各有利弊:如果选择数据的强一致性,建议使用分布式锁的方案,但性能上可能没那么高,且有可能产生死锁的问题。如果选择key的逻辑删除,则优先考虑高可用性,性能比较高,但数据同步这块做不到强一致。

缓存雪崩

        缓存雪崩是,设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB瞬时压力过重而雪崩。与缓存击穿的区别是:雪崩是很多key,而击穿是某一个key缓存。

        解决方案主要是,给缓存业务添加降级限流策略或者给业务添加多级缓存。可以将缓存失效时间分散开。比如,可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机。这样,每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。

双写一致性(redis做为缓存,mysql的数据如何与redis进行同步呢?)

不同的业务场景有不同的策略,面试时一定要根据业务实际情况回答。

双写一致性:当修改了数据库的数据也要同时更新缓存的数据,缓存和数据库的数据要保持一致

1.若一致性要求高:强一致方案(分布式锁)

采用redisson实现的读写锁。

        在读的时候添加共享锁,可以保证读读不互斥,读写互斥(其他线程可以一起读,但是不能写)。当我们更新数据的时候,添加排他锁,它是读写,读读都互斥(其他线程不能读也不能写),这样就能保证在写数据的同时是不会让其他线程读数据的,避免了脏数据。排他锁底层使用也是setnx,保证了同时只能有一个线程操作锁住的方法。

共享锁:读锁readLock,加锁之后,其他线程可以共享读操作。      

排他锁:独占锁writeLock也叫,加锁之后,阻塞其他线程读写操作。

2.延时双删

  • 策略原理:延时双删策略的核心是在写库操作的前后分别进行删除缓存操作,并设定合理的超时时间来确保读请求结束,写请求可以删除可能产生的缓存脏数据。
  • 具体步骤:先删除缓存,再写数据库,然后线程休眠一段时间(比如500毫秒),最后再次删除缓存。休眠时间的确定需要评估项目读数据业务逻辑的耗时,并考虑Redis和数据库主从同步的耗时。
  • 优缺点:这种策略能在一定程度上解决数据不一致的问题,但增加了写请求的耗时,并且在最差的超时时间内,数据仍可能存在不一致性。

延时删除的具体方案,异步通知保证数据的最终一致性

基于Canal的异步通知:

总结:

允许延时一致的业务,采用异步通知 使用MQ中间中间件,更新数据之后,通知缓存删除 利用canal中间件,不需要修改业务代码,伪装为mysql的一个从节点,canal通过读取binlog数据更新缓存。强一致性的,采用Redisson提供的读写锁 共享锁:读锁readLock,加锁之后,其他线程可以共享读操作       排他锁:独占锁writeLock也叫,加锁之后,阻塞其他线程读写操作

数据的持久化

在Redis中提供了两种数据持久化的方式:1、RDB   2、AOF

Redis持久化

        RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。

RDB的执行原理

        bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。 fork采用的是copy-on-write技术: 当主进程执行读操作时,访问共享内存; 当主进程执行写操作时,则会拷贝一份数据,执行写操作。

AOF执行原理

        AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。

        因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置。

RDB与AOF对比

Redis的数据过期策略有哪些

Redis数据删除策略-惰性删除

        惰性删除:设置该key过期时间后,我们不去管它,当需要该key时,我们在检查其是否过期,如果过期,我们就删掉它,反之返回该key。

优点 :对CPU友好,只会在使用该key时才会进行过期检查,对于很多用不到的key不用浪费时间进行过期检查。

缺点 :对内存不友好,如果一个key已经过期,但是一直没有使用,那么该key就会一直存在内存中,内存永远不会释放。

Redis数据删除策略-定期删除

        定期删除:每隔一段时间,我们就对一些key进行检查,删除里面过期的key(从一定数量的数据库中取出一定数量的随机key进行检查,并删除其中的过期key)。

定期清理有两种模式:

  • SLOW模式是定时任务,执行频率默认为10hz,每次不超过25ms,以通过修改配置文件redis.conf 的hz 选项来调整这个次数
  • FAST模式执行频率不固定,但两次间隔不低于2ms,每次耗时不超过1ms

优点:可以通过限制删除操作执行的时长和频率来减少删除操作对 CPU 的影响。另外定期删除,也能有效释放过期键占用的内存。 缺点:难以确定删除操作执行的时长和频率。

Redis的过期删除策略:惰性删除 + 定期删除两种策略进行配合使用。

Redis的数据淘汰策略有哪些

数据淘汰策略

        数据的淘汰策略:当Redis中的内存不够用时,此时在向Redis中添加新的key,那么Redis就会按照某一种规则将内存中的数据删除掉,这种数据的删除规则被称之为内存的淘汰策略。

Redis支持8种不同策略来选择要删除的key:

  1. noeviction: 不淘汰任何key,但是内存满时不允许写入新数据,默认就是这种策略。
  2. volatile-ttl: 对设置了TTL的key,比较key的剩余TTL值,TTL越小越先被淘汰
  3. allkeys-random:对全体key ,随机进行淘汰。
  4. volatile-random:对设置了TTL的key ,随机进行淘汰。
  5. allkeys-lru: 对全体key,基于LRU算法进行淘汰
  6. volatile-lru: 对设置了TTL的key,基于LRU算法进行淘汰
  7. allkeys-lfu: 对全体key,基于LFU算法进行淘汰
  8. volatile-lfu: 对设置了TTL的key,基于LFU算法进行淘汰

LRU(Least Recently Used)最近最少使用。用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。 LFU(Least Frequently Used)最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高。

数据淘汰策略-使用建议

  1.  优先使用 allkeys-lru 策略。充分利用 LRU 算法的优势,把最近最常访问的数据留在缓存中。
  2. 如果业务有明显的冷热数据区分,建议使用。
  3. 如果业务中数据访问频率差别不大,没有明显冷热数据区分,建议使用 allkeys-random,随机选择淘汰。
  4. 如果业务中有置顶的需求,可以使用 volatile-lru 策略,同时置顶数据不设置过期时间,这些数据就一直不被删除,会淘汰其他设置过期时间的数据。
  5. 如果业务中有短时高频访问的数据,可以使用 allkeys-lfu 或 volatile-lfu 策略。

选用Redis八股:Docs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/71183.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在Ubuntu 22.04 LTS 上安装 MySQL两种方式:在线方式和离线方式

Ubuntu安装MySQL 介绍: Ubuntu 是一款基于Linux操作系统的免费开源发行版,广受欢迎。它以稳定性、安全性和用户友好性而闻名,适用于桌面和服务器环境。Ubuntu提供了大量的软件包和应用程序,拥有庞大的社区支持和活跃的开发者社区…

用Java编写sql

1.概念 通过Java代码操作mysql数据库 数据库编程,是需要数据库服务器,提供一些API,供程序员调用的 2.安装 2.1下载 在程序中操作mysql需要先安装mysql的驱动包 并且要把驱动包引入到项目中 在中央仓库可以下载到驱动包(mvnrepository.…

Redis数据结构-List列表

1.List列表 列表类型适用于存储多个有序的字符串(这里的有序指的是强调数据排列顺序的重要,不是升序降序的意思),列表中的每个字符串称为元素(element),一个列表最多可以存储2^32-1个元素。在R…

Linux实操——在服务器上直接从百度网盘下载(/上传)文件

Linux Linux实操——在服务器上直接从百度网盘下载(/上传)文件 文章目录 Linux前言一、下载并安装bypy工具二、认证并授权网盘账号三、将所需文件转移至目的文件夹下四、下载文件五、上传文件六、更换绑定的百度云盘账户 前言 最近收到一批很大的数据&…

题解 | 牛客周赛82 Java ABCDEF

目录 题目地址 做题情况 A 题 B 题 C 题 D 题 E 题 F 题 牛客竞赛主页 题目地址 牛客竞赛_ACM/NOI/CSP/CCPC/ICPC算法编程高难度练习赛_牛客竞赛OJ 做题情况 A 题 判断字符串第一个字符和第三个字符是否相等 import java.io.*; import java.math.*; import java.u…

基金 word-->pdf图片模糊的解决方法

1. 首先需要Adobe或福昕等pdf阅读器。 2. word中 [文件]--[打印],其中打印机选择pdf阅读器,例如此处我选择福昕阅读器。 3. 选择 [打印机属性]--[编辑]--[图像],将所有的采样、压缩均设置为 关闭。点击[另存为],保存为 基金报告…

基于RKNN的嵌入式深度学习开发(2)

上一个章节我们介绍的RKNN模型的模型转换和模型的推理,这一章节我们将介绍模型的量化和评估部分。 2.3 RKNN模型的量化 量化就是将浮点转换为定点运算的过程,或者训练后由rknn来量化。量化模型使用较低精度(如int8/uint8/int16)保…

Qt 中signals和slots、Q_SIGNAL和Q_LOT、Q_SIGNALS和Q_SLOTS的区别和使用

Qt 中signals和slots、Q_SIGNAL和Q_SLOT、Q_SIGNALS和Q_SLOTS的区别和使用 1.signals和slots 信号和槽函数需要在类的声明中明确声明。信号需要使用signals关键字,而槽函数可以使用slots关键字(虽然在现代Qt中,槽函数也可以直接作为普通成员…

【极客时间】浏览器工作原理与实践-2 宏观视角下的浏览器- 2.1 Chrome架构:仅仅打开了1个页面,为什么有4个进程?

https://time.geekbang.org/column/article/113513 2.1 Chrome架构:仅仅打开了1个页面,为什么有4个进程? 前置:基于Chrome浏览器学习浏览器的工作原理 原因: 因为 Chrome、微软的 Edge 以及国内的大部分主流浏览器…

智能图像处理平台:图像处理配置类

这里我们先修改一下依赖&#xff0c;不用JavaCV&#xff0c;用openCV。 导入依赖&#xff1a; <!-- JavaCV 依赖&#xff0c;用于图像和视频处理 --> <!-- <dependency>--> <!-- <groupId>org.bytedeco</groupId>--> &l…

【Python 初级函数详解】—— 参数沙漠与作用域丛林的求生指南

欢迎来到ZyyOvO的博客✨&#xff0c;一个关于探索技术的角落&#xff0c;记录学习的点滴&#x1f4d6;&#xff0c;分享实用的技巧&#x1f6e0;️&#xff0c;偶尔还有一些奇思妙想&#x1f4a1; 本文由ZyyOvO原创✍️&#xff0c;感谢支持❤️&#xff01;请尊重原创&#x1…

夜天之书 #106 Apache 软件基金会如何投票选举?

近期若干开源组织进行换届选举。在此期间&#xff0c;拥有投票权的成员往往会热烈讨论&#xff0c;提名新成员候选人和治理团队的候选人。虽然讨论是容易进行的&#xff0c;但是实际的投票流程和运作方式&#xff0c;在一个成员众多的组织中&#xff0c;可能会有不少成员并不清…

DeepSeek开源周 Day04:从DualPipe聊聊大模型分布式训练的并行策略

DualPipe简介 今天是DeepSeek开源周的第四天&#xff0c;官方开源了一种新型并行计算优化策略——DualPipe。 其实大家阅读过Deepseek-V3技术报告的同学&#xff0c;对这个技术并不陌生。 开源地址&#xff1a;https://github.com/deepseek-ai/DualPipe 核心亮点 DualPipe&…

React:B站评论demo,实现列表渲染、删除按钮显示和功能实现、导航栏渲染切换及高亮显示、评论区的排序

功能要求&#xff1a; 1、渲染评论列表 2、删除评论功能&#xff1a;只显示自己评论的删除按钮&#xff1b;点击删除按钮&#xff0c;删除当前评论&#xff0c;列表中不再显示。 3、渲染导航Tab&#xff08;最新 | 最热&#xff09;和其 高亮实现 4、评论排序功能实现&…

一文了解:部署 Deepseek 各版本的硬件要求

很多朋友在咨询关于 DeepSeek 模型部署所需硬件资源的需求&#xff0c;最近自己实践了一部分&#xff0c;部分信息是通过各渠道收集整理&#xff0c;so 仅供参考。 言归正转&#xff0c;大家都知道&#xff0c;DeepSeek 模型的性能在很大程度上取决于它运行的硬件。我们先看一下…

C#贪心算法

贪心算法&#xff1a;生活与代码中的 “最优选择大师” 在生活里&#xff0c;我们常常面临各种选择&#xff0c;都希望能做出最有利的决策。比如在超市大促销时&#xff0c;面对琳琅满目的商品&#xff0c;你总想用有限的预算买到价值最高的东西。贪心算法&#xff0c;就像是一…

【JAVA SE基础】抽象类和接口

目录 一、前言 二、抽象类 2.1 抽象类的概念 2.2 抽象类语法 2.3 抽象类特性 2.4 抽象类的作用 三、接口 3.1 什么是接口 3.2 语法规则 3.3 接口使用 3.4 接口特性 3.5 实现多接口 3.6 接口间的继承 四、Object类 4.1 获取对象信息&#xff08; toString() &…

查找Excel包含关键字的行(の几种简单快速方法)

需求&#xff1a;数据在后缀为xlsx的Excel的sheet1中且量比较大&#xff0c;比如几十万行几百列&#xff1b;想查找一个关键字所在的行,比如"全网首发"&#xff1b; 情况①知道关键字在哪一列 情况②不确定在哪一列&#xff0c;很多列相似又不同&#xff0c;本文演…

网络运维学习笔记(DeepSeek优化版)009网工初级(HCIA-Datacom与CCNA-EI)路由理论基础与静态路由

文章目录 路由理论基础核心概念路由表六要素路由选路原则加表规则选路优先级 协议与参数常见协议号路由协议优先级对比 网络架构基础AS&#xff08;autonomous system&#xff0c;自治系统&#xff09;路由分类 静态路由(static routing)实验拓扑思科配置示例华为配置示例 典型…

Python 绘制迷宫游戏,自带最优解路线

1、需要安装pygame 2、上下左右移动&#xff0c;空格实现物体所在位置到终点的路线&#xff0c;会有虚线绘制。 import pygame import random import math# 迷宫单元格类 class Cell:def __init__(self, x, y):self.x xself.y yself.walls {top: True, right: True, botto…