网站建设提供商/商城小程序

网站建设提供商,商城小程序,织梦网站内容怎么做付费可见,鹤壁建设网站推广公司电话支持向量机(SVM)是一种用于分类(和回归)的监督学习算法,其主要目标是找到一个最佳决策超平面,将数据点分为不同的类别,并且使得分类边界与最近的数据点之间的间隔(margin&#xff09…

支持向量机(SVM)是一种用于分类(和回归)的监督学习算法,其主要目标是找到一个最佳决策超平面,将数据点分为不同的类别,并且使得分类边界与最近的数据点之间的间隔(margin)最大化,从而提高模型对新数据的泛化能力。

在学习支持向量机之前,我们需要弄清楚一些数学概念和公式。

一、什么是超平面

超平面是指在 n 维空间中,维度为 n-1 的仿射子空间。换句话说,超平面是一个“平坦”的空间,它比所在空间的维度低1。具体来说:

  • 二维空间:超平面是1维的直线。
  • 三维空间:超平面是2维的平面。
  • n维空间:超平面是 n−1 维的空间。

通常,超平面可以用一个线性方程来表示,例如在 nn 维空间中,一个超平面可以写为:

w^T x + b = 0,

其中 w 是一个 n 维向量(称为法向量),b 是一个偏置项,而 x 是 n 维输入向量。这个方程表示所有满足此关系的点构成的集合,也就是超平面。

超平面在机器学习中非常重要,例如支持向量机(SVM)就是利用超平面将数据分为不同类别。

二、什么是法向量

法向量是一个向量,它与给定平面或超平面中的所有向量都垂直。换句话说,如果我们有一个平面或超平面,那么平面内任意一个向量与该平面的法向量的内积都为零。法向量不仅描述了平面或超平面的方向,还在计算点到平面的距离、确定超平面方程以及各种几何变换中起关键作用。

举例说明:

  • 在二维平面中,一个直线可以表示为 ax + by + c = 0。其中,向量 (a, b) 就是这条直线的法向量,因为它与直线上任意两个点构成的向量都垂直。

  • 在三维空间中,一个平面的方程可以写成 ax + by + cz + d = 0,此时 (a, b, c) 就是该平面的法向量。

总结来说,法向量为我们提供了描述平面方向的工具,是理解和操作几何对象的重要概念。

三、什么是向量的模

向量的“模”(或称为“范数”)指的是向量的大小或长度。最常用的度量是欧几里得范数,其计算公式为:

  • 几何意义
    可以把向量看作从原点指向空间中某个点的箭头,向量的模就是这根箭头的长度。

  • 示例
    对于二维向量 v = (3, 4),其模为

    这表示这个向量的长度为5。

四、点到超平面的距离

1. 公式

2. 几何定义

样本 x(n) 到超平面 w^Tx+b=0 的距离,是该点到超平面的最短距离(垂直距离)。

3. 推导过程

  步骤 1:任取超平面上一点 x′,满足 w^Tx′+b=0。

五、超平面到超平面的距离

考虑两个平行超平面,其方程分别为

这两个超平面平行,因为它们具有相同的法向量 w。

为了求两个超平面之间的距离,我们可以任选一个在第一个超平面上的点,然后计算它到第二个超平面的距离。

六、现在我们切入本文的主题:支持向量机

支持向量机(Support Vector Machine,SVM)是一个经典的二分类算法, 其找到的分割超平面具有更好的鲁棒性,因此广泛使用在很多任务上,并表现出 了很强优势。

支持向量机(SVM)是一种监督学习算法,主要用于解决分类问题,尤其是二分类问题。其核心思想是通过寻找一个最优的决策边界(在二维空间中就是一条直线,在更高维空间中则是一个超平面),使得正类和负类数据点之间的间隔(margin)最大化。

(一)基本概念

 给定一个二分类器数据集

如果两类样本是线性可分的,即存在一个超平面 w^T x + b = 0,

我们定义间隔(Margin)𝛾 为整个数据集 𝐷 中所有样本到分割超平面的最短距离。

如果间隔 𝛾 越大,其分割超平面对两个数据集的划分越稳定,不容易受噪声等因素影响。

支持向量机的目标是寻找一个超平面使得 𝛾 最大

(二)这里先弄清楚上面提到的一个关键点:两类样本线性可分时,则每个样本满足 y(w^Tx+b)>0

1. 超平面的定义

在二分类问题中,超平面是决策边界,形式为:

            w^Tx+b=0

其中:

  • w 是超平面的法向量(决定方向)。

  • b 是偏置项(决定超平面与原点的距离)。

2. 线性可分性

若两类样本线性可分,则存在一个超平面,使得:

  • 正类样本(y=+1)满足 w^Tx+b>0。

  • 负类样本(y=−1)满足 w^Tx+b<0。

3. 统一表达

将两类样本的条件合并为:

y(w^Tx+b)>0

  • 当 y=+1 时,w^Tx+b>0,乘积为正。

  • 当 y=−1 时,w^Tx+b<0,乘积仍为正。

因此,所有样本均满足 y(w^Tx+b)>0

(三)核心思想与基本概念

  • 决策超平面
    在 n 维空间中,一个超平面可以表示为

    w^T x + b = 0,

    其中 w 是超平面的法向量,b 是偏置。支持向量机寻找这样一个超平面,将正负类数据分隔开。

  • 最大化间隔
    SVM 不仅要求决策超平面能够分隔两类数据,还要求该超平面与数据中最近的点之间的距离(称为“间隔”)尽可能大。直观上,间隔越大,模型对噪声和数据变化的容忍度就越高,泛化能力也就越强。
    结合前面的点到超平面的距离公式,对于线性可分的情况,间隔可以证明是: ​,因此最大化间隔等价于最小化

       对于一个线性可分的数据集,其分割超平面有很多个,但是间隔最大的超平面是唯一的,下面放一张图辅助理解:

  • 支持向量
    那些位于决策边界附近的训练样本被称为“支持向量”。这些点决定了决策超平面的最终位置和方向。换句话说,只要知道支持向量的信息,就可以确定最优的超平面。

  • 非线性扩展
    当数据在原始空间中线性不可分时,SVM 可以使用“核技巧”(Kernel Trick)将数据映射到一个高维空间,在高维空间中数据可能变得线性可分,再在高维空间中找到最佳决策超平面。常见的核函数包括径向基函数(RBF)、多项式核等。

(四)间隔的推导过程如下:

  • 点到超平面的距离公式

对于任意点 x_0​ 到超平面的距离公式是:

  • 计算支持向量到决策边界的距离

  • 两个边界超平面之间的间隔

两个边界超平面之间的距离就是这两个距离的和,即:

(五)优化目标

因此,SVM 的目标是求解如下的优化问题:

约束条件为:

这里注意思考:为什么优化目标是 

**** 关于支持向量机参数的学习,鉴于篇幅,下一篇博文再做介绍。

(六)相关概念

1.线性可分 vs 非线性可分
  • 线性可分:存在一个超平面完美分隔两类数据(如二维平面上的直线)。

  • 非线性可分:需通过 核技巧(Kernel Trick)将数据映射到高维空间,使其线性可分。

2. 核函数(Kernel Function)
  • 作用:隐式计算高维空间的内积,避免显式映射。

  • 常见核函数

3. 软间隔(Soft Margin)

(七)SVM的优缺点

优点缺点
高维数据有效(核技巧)计算复杂度高(大规模数据不适用)
泛化能力强(间隔最大化)需要谨慎调参(如CC、γγ)
支持线性和非线性分类多分类需额外策略(OvR/OvO)

(八)代码示例

from sklearn import svm
from sklearn.datasets import make_classification
import matplotlib.pyplot as plt# 生成线性可分数据
X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=42)# 训练SVM
model = svm.SVC(kernel='linear', C=1.0)
model.fit(X, y)# 可视化决策边界
plt.scatter(X[:,0], X[:,1], c=y, cmap='bwr')
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()# 生成网格点
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = model.decision_function(xy).reshape(XX.shape)# 绘制超平面和间隔
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], linestyles=['--', '-', '--'])
ax.scatter(model.support_vectors_[:,0], model.support_vectors_[:,1], s=100, facecolors='none', edgecolors='k')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/70920.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[Web 信息收集] Web 信息收集 — 手动收集 IP 信息

关注这个专栏的其他相关笔记&#xff1a;[Web 安全] Web 安全攻防 - 学习手册-CSDN博客 0x01&#xff1a;通过 DNS 服务获取域名对应 IP DNS 即域名系统&#xff0c;用于将域名与 IP 地址相互映射&#xff0c;方便用户访问互联网。对于域名到 IP 的转换过程则可以参考下面这篇…

基于定制开发开源AI大模型S2B2C商城小程序的商品选品策略研究

摘要&#xff1a;随着电子商务的蓬勃发展和技术的不断进步&#xff0c;商品选品在电商领域中的重要性日益凸显。特别是在定制开发开源AI大模型S2B2C商城小程序的环境下&#xff0c;如何精准、高效地选择推广商品&#xff0c;成为商家面临的一大挑战。本文首先分析了商品选品的基…

labview中VISA串口出现异常的解决方案

前两天在做项目时发现&#xff0c;当用VISA串口读取指令时出现了回复异常的情况&#xff0c;不管发什么东西就一直乱回&#xff0c;针对这个情况&#xff0c;后面在VISA串口中加了一个VISA寄存器清零的函数。加了之后果然好多了&#xff0c;不会出现乱回的情况&#xff0c;但是…

staruml绘制时序图和用例图

文章目录 1.文章介绍2.绘制用例图3.绘制时序图 1.文章介绍 之前&#xff0c;我们初步介绍了这个staruml软件的安装和如何使用这个软件对于uml类图进行绘制&#xff0c;当时我们是绘制了这个user类&#xff0c;实现了相关的接口&#xff0c;表示他们之间的关系&#xff0c;在今…

开放标准(RFC 7519):JSON Web Token (JWT)

开放标准&#xff1a;JSON Web Token 前言基本使用整合Shiro登录自定义JWT认证过滤器配置Config自定义凭证匹配规则接口验证权限控制禁用session缓存的使用登录退出单用户登录Token刷新双Token方案单Token方案 前言 JSON Web Token &#xff08;JWT&#xff09; 是一种开放标准…

使用 Polars 进行人工智能医疗数据分析(ICU数据基本测试篇)

引言 在医疗领域&#xff0c;数据就是生命的密码&#xff0c;每一个数据点都可能蕴含着拯救生命的关键信息。特别是在 ICU 这样的重症监护场景中&#xff0c;医生需要实时、准确地了解患者的病情变化&#xff0c;以便做出及时有效的治疗决策。而随着医疗技术的飞速发展&#x…

瑞芯微RK安卓Android主板GPIO按键配置方法,触觉智能嵌入式开发

触觉智能分享&#xff0c;瑞芯微RK安卓Android主板GPIO按键配置方法&#xff0c;方便大家更好利用空闲IO&#xff01;由触觉智能Purple Pi OH鸿蒙开发板演示&#xff0c;搭载了瑞芯微RK3566四核处理器&#xff0c;树莓派卡片电脑设计&#xff0c;支持安卓Android、开源鸿蒙Open…

SSL 证书是 SSL 协议实现安全通信的必要组成部分

SSL证书和SSL/TLS协议有着密切的关系&#xff0c;但它们本质上是不同的概念。下面是两者的区别和它们之间的关系的表格&#xff1a; 属性SSL/TLS 协议SSL证书英文全称SSL&#xff08;Secure Sockets Layer&#xff09;&#xff0c;TLS&#xff08;Transport Layer Security&am…

QT:模型视图代理

Qt Model/View/Delegate&#xff08;MVD&#xff09;框架&#xff0c;它是 Qt 中用于实现数据显示和编辑的一种架构模式&#xff0c;主要由模型&#xff08;Model&#xff09;、视图&#xff08;View&#xff09;和委托&#xff08;Delegate&#xff09;三部分组成&#xff0c;…

PowerShell 执行策略:fnm管理软件安装nodejs无法运行npm,错误信息:about_Execution_Policies

通过fnm管理软件安装NodeJS后添加环境变量依然无法执行npm,提示无法加载文件&#xff0c;错误如下&#xff1a; PowerShell 执行策略简介&#xff1a; PowerShell 执行策略是一项安全功能&#xff0c;用于控制 PowerShell 加载配置文件和运行脚本的条件。 此功能有助于防止恶…

利用 Windows Terminal 和 SSH Config 简化 Linux 服务器管理

在日常的 Linux 服务器管理中&#xff0c;频繁登录不同的主机是一项常见任务。传统方法可能需要记住复杂的 IP 地址、用户名和端口&#xff0c;或者依赖如 Xshell 这样的第三方工具。但借助 Windows Terminal 和 SSH 的 .ssh/config 文件&#xff0c;我们可以打造一个高效、免费…

DeepSeek-R1-671B大模型满血版私有化部署高可用教程-SparkAi系统集成图文教程

DeepSeek官网服务器繁忙的主要原因是由于用户数量激增导致的服务器资源紧张。‌为了解决这一问题&#xff0c;DeepSeek团队已经暂停了API服务充值&#xff0c;以避免对用户造成业务影响。目前&#xff0c;存量充值金额仍可继续调用&#xff0c;但充值功能暂时不可用‌。 DeepSe…

【项目管理】基于 C 语言的 QQ 聊天室实现(TCP + 多线程 + SQLite3)

基于 C 语言的 QQ 聊天室(TCP + 多线程 + SQLite3) 项目功能基础功能: 登录、注册、添加好友、私聊、创建群聊、群聊扩展功能: 删除好友、注销账号、好友在线状态、群管理(拉人/踢人)、VIP 特权、邮件通知等 功能介绍:模拟QQ聊天客户端:登录界面:1、登录2、注册 //将用…

SOC-ATF 安全启动BL1流程分析(1)

一、ATF 源码下载链接 1. ARM Trusted Firmware (ATF) 官方 GitHub 仓库 GitHub 地址: https://github.com/ARM-software/arm-trusted-firmware 这是 ATF 的官方源码仓库&#xff0c;包含最新的代码、文档和示例。 下载方式&#xff1a; 使用 Git 克隆仓库&#xff1a; git…

.Net Core Visual Studio NuGet.Config 配置参考

Visual Studio 2022 NUGET NU1301 无法加载源 基础连接已关闭&#xff1a;无法建立SSL / TLS安全通道的信任关系&#xff1b;根据验证过程&#xff0c;远程证书无效&#xff0c;参考文章&#xff1a;https://blog.csdn.net/hefeng_aspnet/article/details/145780081 NuGet 行为…

同价位usb网卡与pcie网卡网速差距实测 热点测试

选用两款价位在75上下的网卡 2.4G usb&#xff1a; 2.4G pcie网卡&#xff1a; 5G PCIE 5G USB

DVWA -第二关-命令执行

这里是个ping命令的提交框 我们在输入ping命令的时候&#xff0c;同时执行其他命令操作 low 输入127.0.0.||ipconfig 消除乱码的方法&#xff1a;修改dvwaPage.inc.php文件中的”charsetutf-8”&#xff0c;修改”charsetGB2312” 可以显示出来&#xff0c;初级没有过滤 m…

类和对象——const修饰的类的对象和函数

const修饰的类的对象和函数 const成员函数和const对象1 const成员函数2 调用关系3 const在成员函数中的位置4 取地址&及const取地址操作符重载 const成员函数和const对象 1 const成员函数 将const修饰的“成员函数”称之为const成员函数&#xff0c;const修饰类成员函数&…

【DeepSeek-R1背后的技术】系列十三:归一化方式介绍(BatchNorm, LayerNorm, Instance Norm 和 GroupNorm)

【DeepSeek-R1背后的技术】系列博文&#xff1a; 第1篇&#xff1a;混合专家模型&#xff08;MoE&#xff09; 第2篇&#xff1a;大模型知识蒸馏&#xff08;Knowledge Distillation&#xff09; 第3篇&#xff1a;强化学习&#xff08;Reinforcement Learning, RL&#xff09;…

计算机毕设-基于springboot的融合多源高校画像数据与协同过滤算法的高考择校推荐系统的设计与实现(附源码+lw+ppt+开题报告)

博主介绍&#xff1a;✌多个项目实战经验、多个大型网购商城开发经验、在某机构指导学员上千名、专注于本行业领域✌ 技术范围&#xff1a;Java实战项目、Python实战项目、微信小程序/安卓实战项目、爬虫大数据实战项目、Nodejs实战项目、PHP实战项目、.NET实战项目、Golang实战…