生成式AI安全最佳实践 - 抵御OWASP Top 10攻击 (上)

今天小李哥将开启全新的技术分享系列,为大家介绍生成式AI的安全解决方案设计方法和最佳实践。近年来,生成式 AI 安全市场正迅速发展。据 IDC 预测,到 2025 年全球 AI 安全解决方案市场规模将突破 200 亿美元,年复合增长率超过 30%,而 Gartner 则预估到 2025 年约 30% 的网络攻击将利用生成式 AI 技术。与此同时,Capgemini 的调查显示,近 74% 的企业认为 AI 驱动的安全防护至关重要,加上 Cybersecurity Ventures 报告指出,与生成式 AI 相关的安全事件年增长率超过 20%,这充分表明企业和安全供应商正面临日益严峻的安全挑战,并加大投入以构建更全面的防护体系。今天要介绍的就是如何设计生成式AI应用安全解决方案,抵御OWASP Top 10攻击。未来也会分享更多的AI安全解决方案,欢迎大家关注。

目前我们生活中有各色各样的生成式 AI应用,常见的场景之一就是生成式AI对话助手。然而在部署之前,通常还要对应用进行评估,其中包括了解安全态势、监控和日志记录、成本跟踪、弹性等问题。在这些评估中,安全性通常是最高优先级。如果存在无法明确识别的安全风险,我们就无法有效解决这些风向,这可能会阻碍生成式AI应用向生产环境部署的进度。

在本文章中,小李哥将向大家展示一个自己设计的生成式应用的真实场景,并演示如何利用 OWASP安全框架,基于大语言模型应用常见的Top 10安全攻击来评估应用的安全态势,以及实施缓解措施。

生成式 AI 范围框架

在我们开始介绍方案前,我们首先要了解生成式AI应用的两种模式,托管和私有化部署。当我们使用亚马逊云科技的生成式AI安全框架,我们要理解适用于我们应用的部署模式以及对应安全控制,和如何利用亚马逊责任共担模型提升应用安全性。例如下图中我们就针对不同的部署模式对应了5个scope范围,Scope 1的“Consumer Apps”类应用中,比如亚马逊的PartyRock或OpenAI的ChatGPT,通常是面向公众的应用,大部分内部安全由服务提供商掌控,大家在安全方面的责任主要在客户端。与此相对的是Scope 4/5层应用,在这类应用中,大家不仅要自行构建和保障生成式AI应用,还需要负责对底层大语言模型进行微调和训练。Scope 4/5应用的安全控制范围会更多、更广,从前端、后端到LLM模型的安全都有涉及。本文将重点讨论Scope 3生成式AI应用的安全解决方案,这是实际应用中较为常见的案例。

下图展示了亚马逊云科技生成式AI安全范围矩阵的5个scope,并总结了各个范围下模型/部署的类型。

针对大语言模型的OWASP Top 10攻击框架

接下来我们将利用OWASP Top 10攻击框架来理解目前生成式AI应用的威胁和缓解措施,OWASP是评估应用安全性最常见的方法之一。针对大语言模型的OWASP Top 10攻击框架专门应用于生成式AI应用,帮助大家发现、理解并防护生成式 AI 所面临的新型威胁。

生成式AI应用安全解决方案设计

接下来,我们从一个完整的生成式AI的应用架构图出发,展示如何对一个典型的生成式AI应用,在OWASP大语言模型威胁框架下进行风险评估。流程图如下图所示。

在这一架构中,用户的API请求通常会经过以下云环境内的系统组件:

身份验证层

这一层主要是验证连接到AI应用的用户的身份。我们通常通过身份提供商(IdP)功能实现,比如 Okta、亚马逊云科技IAM Identity Center或Amazon Cognito。

应用层

这一层包含大部分应用业务逻辑,负责决定如何处理传入应用的用户请求,包括生成AI模型的提示词并处理AI模型返回的响应,之后再将结果返回给终端的用户。

AI模型与代理

AI基础模型是提供生成式AI应用的核心能力,而AI代理则负责协调完成请求所需的各个任务步骤,这些步骤可能同时涉及AI模型调用和从外部数据源获取数据,以及外部API集成。

代理插件控制层

该组件负责与外部数据源和API集成,同时存储着AI代理引用的外部系统组件的逻辑名称和物理名称之间的匹配关系。

RAG知识库数据存储

知识库检索增强生成(RAG)的数据存储通过数据连接器,从对象存储S3、数据仓库、数据库RDS以及其他SaaS应用中提取最新、精准且有权限管理限制下的信息。

我们将大语言模型的OWASP Top 10风险框架应用到到我们云端应用堆栈的各层,可以识别出从用户界面到后端系统的漏洞。下面我们将讨论位于应用堆栈每个层面的风险,并提供一个基于亚马逊云科技的生成式AI应用安全设计方法,以消除这些风险。

下图展示了在亚马逊云科技上实现生成式AI应用的安全最佳实践架构图。下面我会将下图中应用于各层的解决方案依次进行介绍。

身份验证层(Amazon Cognito)

我们生活中一直活跃着常见的网络攻击,如暴力破解攻击、会话劫持和拒绝服务(DoS/DDoS)攻击等。为了解决这些风险和攻击,我们需要在系统方案中实施安全最佳实践,比如多因素认证(MFA)、网页请求速率限制、会话安全管理、会话超时timeout配置以及定期访问令牌轮换。此外,我们还可以部署亚马逊云科技WAF和分布式拒绝服务(DDoS)解决方案AWS Shield等边缘安全措施,帮助我们防护常见的网络攻击,并在攻击期间保持服务可用性。

在上述架构图中,我们将亚马逊云科技WAF与Amazon API Gateway进行了集成,用于过滤和屏蔽恶意的访问请求,从而保护应用免受SQL注入、跨站脚本(XSS)和DoS/DDoS等攻击。亚马逊云科技WAF Bot Control的功能可以进一步提升应用的安全性,通过对机器人等自动化脚本流量的可视性和控制功能,让大家可以屏蔽或对恶意的机器人进行限速和阻挡。该功能可通过亚马逊云科技 Firewall Manager在多个账号间集中管理,从而为应用提供一致而强大的保护。

Amazon Cognito服务更可以增强这些防御措施,该服务主要功能是实现用户身份验证,支持不同种多样的用户池和身份池,使大家能够在不同设备间无缝切换,而使用相同的用户身份授权并与第三方身份提供商集成。Amazon Cognito也提供其他多样化的安全功能包括MFA、OAuth 2.0、OpenID Connect、安全会话管理以及基于用户行为风险的动态调整的身份验证,防止用户未经授权的访问,该动态调整机制可以通过对登录请求中可疑活动的评估,并通过额外的安全措施(如 MFA 或屏蔽登录)进行响应。此外Amazon Cognito还强制防止密码重用,从而进一步降低密码泄露的风险。

亚马逊云科技Shield Advanced则是为了应对复杂的DDoS攻击提供了额外的保护。它与亚马逊云科技WAF集成,通过定制化攻击检测和基于系统健康状况的评估,为我们的AI应用提供全面的边界保护,增强了我们对DDoS攻击的响应能力。Shield Advanced还提供了全天候的客服支持,由亚马逊云科技Shield客服响应团队提供24*7的支持,服务内容包括了DDoS成本保护,确保应用在保持安全的同时安全成本可控。Shield Advanced与亚马逊云科技WAF结合搭配,为生成式AI应用构建了一个既能抵御各种安全共计与威胁,又能保持服务高可用性的安全框架。

以上的安全方案有效解决了两大OWASP常见的安全攻击问题,分别是LLM10:2025不受限制的使用(DoS/DDoS攻击)和LLM02:2025敏感信息泄露的问题(避免web攻击盗取数据),确保应用既具备弹性又安全。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/69075.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《LLM大语言模型深度探索与实践:构建智能应用的新范式,融合代理与数据库的高级整合》

文章目录 Langchain的定义Langchain的组成三个核心组件实现整个核心组成部分 为什么要使用LangchainLangchain的底层原理Langchain实战操作LangSmithLangChain调用LLM安装openAI库-国内镜像源代码运行结果小结 使用Langchain的提示模板部署Langchain程序安装langserve代码请求格…

开发板上Qt运行的环境变量的三条设置语句的详解

在终端中运行下面三句命令用于配置开发板上Qt运行的环境变量: export QT_QPA_GENERIC_PLUGINStslib:/dev/input/event1 export QT_QPA_PLATFORMlinuxfb:fb/dev/fb0 export QT_QPA_FONTDIR/usr/lib/fonts/设置成功后可以用下面的语句检查设置成功没有 echo $QT_QPA…

e2studio开发RA4M2(6)----GPIO外部中断(IRQ)配置

e2studio开发RA4M2.6--GPIO外部中断(IRQ)配置 概述视频教学样品申请硬件准备参考程序源码下载新建工程工程模板保存工程路径芯片配置工程模板选择时钟设置SWD调试口设置GPIO口配置按键中断配置中断回调函数主程序 概述 GPIO(通用输入/输出&a…

鸿蒙Harmony-双向数据绑定MVVM以及$$语法糖介绍

鸿蒙Harmony-双向数据绑定MVVM以及$$语法糖介绍 1.1 双向数据绑定概念 在鸿蒙(HarmonyOS)应用开发中,双向数据改变(或双向数据绑定)是一种让数据模型和UI组件之间保持同步的机制,当数据发生变化时&#x…

git基础使用--3---git安装和基本使用

文章目录 git基础使用--3--git-安装和基本使用1. git工具安装1.1 git1.2 TortoiseGit1.3 远程仓2. git本地仓库版本管理2.1 git常用命令2.2 git基本操作2.2.1 设置用户名和邮箱 2.2 git基本操作2.2.1 初始化本地仓 git init2.2.2 查看本地库状态 git status2.2.3 添加暂缓区2.2…

JVM执行流程与架构(对应不同版本JDK)

直接上图(对应JDK8以及以后的HotSpot) 这里主要区分说明一下 方法区于 字符串常量池 的位置更迭: 方法区 JDK7 以及之前的版本将方法区存放在堆区域中的 永久代空间,堆的大小由虚拟机参数来控制。 JDK8 以及之后的版本将方法…

信息安全专业2025最新毕业设计选题汇总:课题精选

目录 前言 毕设选题 开题指导建议 更多精选选题 选题帮助 最后 前言 大家好,这里是海浪学长毕设专题! 大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理…

c++ 定点 new 及其汇编解释

&#xff08;1&#xff09; 代码距离&#xff1a; #include <new> // 需要包含这个头文件 #include <iostream>int main() {char buffer[sizeof(int)]; // 分配一个足够大的字符数组作为内存池int* p new(&buffer) int(42); // 使用 placement new…

C++多线程编程——基于策略模式、单例模式和简单工厂模式的可扩展智能析构线程

1. thread对象的析构问题 在 C 多线程标准库中&#xff0c;创建 thread 对象后&#xff0c;必须在对象析构前决定是 detach 还是 join。若在 thread 对象销毁时仍未做出决策&#xff0c;程序将会终止。 然而&#xff0c;在创建 thread 对象后、调用 join 前的代码中&#xff…

UE求职Demo开发日志#21 背包-仓库-装备栏移动物品

1 创建一个枚举记录来源位置 UENUM(BlueprintType) enum class EMyItemLocation : uint8 {None0,Bag UMETA(DisplayName "Bag"),Armed UMETA(DisplayName "Armed"),WareHouse UMETA(DisplayName "WareHouse"), }; 2 创建一个BagPad和WarePa…

分割链表

题目&#xff1a; 给定一个链表的头节点和一个特定值 x &#xff0c;请你对链表进行分隔&#xff0c;使得所有小于 x 的节点都出现在大于等于 x 的节点之前 ( 链表中节点数为[0,500]&#xff0c;不要求链表的顺序 &#xff09; 思路一&#xff1a;在原链表上进行修改 在原链表…

starrocks最佳实践、行业实践

最佳实践 starrocks最佳实践 最佳实践集合 Bitmap索引适用场景和最佳实践 行业实践 行业实践

响应式编程_01基本概念:前世今生

文章目录 引言响应式编程的技术优势全栈式响应式编程从传统开发模式到异步执行技术Web 请求与 I/O 模型异步调用的实现技术回调Future机制 响应式编程实现方法观察者模式发布-订阅模式数据流与响应式 响应式宣言和响应式系统 引言 大流量、高并发的访问请求的项目&#xff0c;…

一文速览DeepSeek-R1的本地部署——可联网、可实现本地知识库问答:包括671B满血版和各个蒸馏版的部署

前言 自从deepseek R1发布之后「详见《一文速览DeepSeek R1&#xff1a;如何通过纯RL训练大模型的推理能力以比肩甚至超越OpenAI o1(含Kimi K1.5的解读)》」&#xff0c;deepseek便爆火 爆火以后便应了“人红是非多”那句话&#xff0c;不但遭受各种大规模攻击&#xff0c;即便…

队列 + 宽搜(4题)

目录 1.n叉树的层序遍历 2.二叉树的锯齿形层序遍历 3.二叉树的最大宽度 4.在每个树行中找最大值 1.n叉树的层序遍历 429. N 叉树的层序遍历 - 力扣&#xff08;LeetCode&#xff09; 我们只需要把某个节点出队的时候把它的孩子节点添加进来即可。 出队的次数就是最开始队列…

惰性函数【Ⅱ】《事件绑定的自我修养:从青铜到王者的进化之路》

【Ⅱ】《事件绑定的自我修养&#xff1a;从青铜到王者的进化之路》 1. 代码功能大白话&#xff08;给室友讲明白版&#xff09; // 青铜写法&#xff1a;每次都要问浏览器"你行不行&#xff1f;" function addEvent青铜版(element, type, handler) {if (window.add…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.28 NumPy+Matplotlib:科学可视化的核心引擎

2.28 NumPyMatplotlib&#xff1a;科学可视化的核心引擎 目录 #mermaid-svg-KTB8Uqiv5DLVJx7r {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-KTB8Uqiv5DLVJx7r .error-icon{fill:#552222;}#mermaid-svg-KTB8Uqiv5…

upload-labs安装与配置

前言 作者进行upload-labs靶场练习时&#xff0c;在环境上出了很多问题&#xff0c;吃了很多苦头&#xff0c;甚至改了很多配置也没有成功。 upload-labs很多操作都是旧时代的产物了&#xff0c;配置普遍都比较老&#xff0c;比如PHP版本用5.2.17&#xff08;还有中间件等&am…

【OS】AUTOSAR架构下的Interrupt详解(下篇)

目录 3.代码分析 3.1中断配置代码 3.2 OS如何找到中断处理函数 3.3 Os_InitialEnableInterruptSources实现 3.4 Os_EnableInterruptSource 3.5 DisableAllInterrupts 3.5.1Os_IntSuspendCat1 3.5.2 Os_InterruptDisableAllEnter 3.5.3 Disable二类中断 3.5.4 Disable一…

RabbitMQ快速上手及入门

概念 概念&#xff1a; publisher&#xff1a;生产者&#xff0c;也就是发送消息的一方 consumer&#xff1a;消费者&#xff0c;也就是消费消息的一方 queue&#xff1a;队列&#xff0c;存储消息。生产者投递的消息会暂存在消息队列中&#xff0c;等待消费者处理 exchang…