【数据结构】_链表经典算法OJ:复杂链表的复制

目录

1. 题目链接及描述

2. 解题思路

3. 程序


1. 题目链接及描述

题目链接:138. 随机链表的复制 - 力扣(LeetCode)

题目描述:

给你一个长度为 n 的链表,每个节点包含一个额外增加的随机指针 random ,该指针可以指向链表中的任何节点或空节点(拷贝结点的核心解决点)

构造这个链表的 深拷贝。 深拷贝应该正好由 n 个 全新 节点组成,其中每个新节点的值都设为其对应的原节点的值。新节点的 next 指针和 random 指针也都应指向复制链表中的新节点,并使原链表和复制链表中的这些指针能够表示相同的链表状态。复制链表中的指针都不应指向原链表中的节点 。

例如,如果原链表中有 X 和 Y 两个节点,其中 X.random --> Y 。那么在复制链表中对应的两个节点 x 和 y ,同样有 x.random --> y 。

返回复制链表的头节点。

用一个由 n 个节点组成的链表来表示输入/输出中的链表。

每个节点用一个 [val, random_index] 表示:

val:一个表示 Node.val 的整数。
random_index:随机指针指向的节点索引(范围从 0 到 n-1);如果不指向任何节点,则为null。
你的代码 只 接受原链表的头节点 head 作为传入参数。

2. 解题思路

依次拷贝原链表的每一个结点,将拷贝结点插入在源结点的后面,则random指向的结点与拷贝后的结点对应的相对距离是相同的。

具体实现分为三大步:
第一步:遍历原链表,逐个拷贝结点,并将拷贝结点插入原结点的后面(此步需处理每个结点的next域);

第二步:逐个处理拷贝结点的random域:

 以题示例为例,依次插入copy结点后,以第二个结点为例,观察cur->random与copy->random的关系:

第三步:从原链表中逐个拆解拷贝结点,将其逐个尾插构成一个新链表,记新链表的第一个结点为copyHead,返回copyHead即可;

注:对于原链表是否进行恢复可自行选择。

3. 程序

/*** Definition for a Node.* struct Node {*     int val;*     struct Node *next;*     struct Node *random;* };*/
typedef struct Node Node;
struct Node* copyRandomList(struct Node* head) {Node* cur = head;// Node* curNext=cur->next;// 依次创建原链表每个结点的拷贝结点// 将每个拷贝结点链到原结点的后面:修改next域while (cur) {Node* copy = (Node*)malloc(sizeof(Node));copy->val = cur->val;// 将copy链入原链表copy->next = cur->next;cur->next = copy;// 更新curcur = copy->next;}// 修改random域cur = head;while (cur) {Node* copy = cur->next;if (cur->random == NULL) {copy->random = NULL;} else {copy->random = cur->random->next;}// 更新curcur = copy->next;}// 从原链表中拆解拷贝链表// 依次取copy结点尾插到新链表Node *copyHead = NULL, *copyTail = NULL;cur = head;while (cur) {Node* copy = cur->next;Node* copyNext = copy->next;// 单独处理拷贝链表为空的情况if (copyTail == NULL) {copyHead = copyTail = copy;} else {// 尾插copy并更新copyTailcopyTail->next = copy;copyTail = copyTail->next;}// 更新cur与copycur=copy->next;}return copyHead;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/69004.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux——进程间通信之SystemV共享内存

前言 SystemV通信一般包括三种:共享内存、消息队列和信号量。共享内存区是最快的IPC形式。一旦这样的内存映射到共享它的进程的地址空间,这些进程间数据传递不再涉及到 内核,换句话说是进程不再通过执行进入内核的系统调用来…

Linux网络 | 网络层IP报文解析、认识网段划分与IP地址

前言:本节内容为网络层。 主要讲解IP协议报文字段以及分离有效载荷。 另外, 本节也会带领友友认识一下IP地址的划分。 那么现在废话不多说, 开始我们的学习吧!! ps:本节正式进入网络层喽, 友友们…

SQLGlot:用SQLGlot解析SQL

几十年来,结构化查询语言(SQL)一直是与数据库交互的实际语言。在一段时间内,不同的数据库在支持通用SQL语法的同时演变出了不同的SQL风格,也就是方言。这可能是SQL被广泛采用和流行的原因之一。 SQL解析是解构SQL查询…

Windows程序设计10:文件指针及目录的创建与删除

文章目录 前言一、文件指针是什么?二、设置文件指针的位置:随机读写,SetFilePointer函数1.函数说明2.函数实例 三、 目录的创建CreateDirectory四、目录的删除RemoveDirectory总结 前言 Windows程序设计10:文件指针及目录的创建与…

线程互斥同步

前言: 简单回顾一下上文所学,上文我们最重要核心的工作就是介绍了我们线程自己的LWP和tid究竟是个什么,总结一句话,就是tid是用户视角下所认为的概念,因为在Linux系统中,从来没有线程这一说法,…

DRM系列七:Drm之CREATE_DUMB

本系列文章基于linux 5.15 DRM驱动的显存由GEM(Graphics execution management)管理。 一、创建流程 创建buf时,user层提供需要buf的width,height以及bpp(bite per pixel),然后调用drmIoctl(fd, DRM_IOCTL_MODE_CREATE_DUMB, &…

我们信仰AI?从神明到人工智能——信任的进化

信任的进化: 信任是我们最宝贵的资产。而现在,它正像黑色星期五促销的廉价平板电视一样,被一点点拆解。在过去,世界很简单:人们相信晚间新闻、那些满是灰尘书籍的教授,或者手持病历、眉头紧锁的医生。而如…

数据分析系列--[11] RapidMiner,K-Means聚类分析(含数据集)

一、数据集 二、导入数据 三、K-Means聚类 数据说明:提供一组数据,含体重、胆固醇、性别。 分析目标:找到这组数据中需要治疗的群体供后续使用。 一、数据集 点击下载数据集 二、导入数据 三、K-Means聚类 Ending, congratulations, youre done.

1-刷力扣问题记录

25.1.19 1.size()和.length()有什么区别 2.result.push_back({nums[i], nums[left], nums[right]});为什么用大括号? 使用大括号 {} 是 C11 引入的 初始化列表 语法,它允许我们在构造或初始化对象时直接传入一组值。大括号的使用在许多情况下都能让代码…

神经网络参数量和运算量的计算- 基于deepspeed库和thop库函数

引言 最近需要对神经网络的参数量和运算量进行统计。找到一个基于deepspeed库函数计算参数量和运算量的例子。而我之前一直用thop库函数来计算。 看到有一篇勘误博文写道使用thops库得到的运算量是MACs (Multiply ACcumulate operations,乘加累积操作次数&#xf…

读书笔记--分布式架构的异步化和缓存技术原理及应用场景

本篇是在上一篇的基础上,主要对分布式应用架构下的异步化机制和缓存技术进行学习,主要记录和思考如下,供大家学习参考。大家知道原来传统的单一WAR应用中,由于所有数据都在同一个数据库中,因此事务问题一般借助数据库事…

无用知识研究:std::initializer_list的秘密

先说结论,用std::initializer_list初始化vector,内部逻辑是先生成了一个临时数组,进行了拷贝构造,然后用这个数组的起终指针初始化initializer_list。然后再用initializer_list对vector进行初始化,这个动作又触发了拷贝…

Jupyterlab和notebook修改文件的默认存放路径的方法

文章目录 1.缘由2.操作流程2.1找到默认的路径2.2创建配置文件2.3修改配置文件内容2.4注意事项 1.缘由 我自己使用jupyterlab的时候,打开是在这个浏览器上面打开的,但是这个打开的文件路径显示的是C盘上面路径,所以这个就很麻烦,因…

HarmonyOS:ArkWeb进程

ArkWeb是多进程模型,分为应用进程、Web渲染进程、Web GPU进程、Web孵化进程和Foundation进程。 说明 Web内核没有明确的内存大小申请约束,理论上可以无限大,直到被资源管理释放。 ArkWeb进程模型图 应用进程中Web相关线程(应用唯一) 应用进程为主进程。包含网络线程、Vi…

基于Spring Security 6的OAuth2 系列之九 - 授权服务器--token的获取

之所以想写这一系列,是因为之前工作过程中使用Spring Security OAuth2搭建了网关和授权服务器,但当时基于spring-boot 2.3.x,其默认的Spring Security是5.3.x。之后新项目升级到了spring-boot 3.3.0,结果一看Spring Security也升级…

音标-- 02-- 重音 音节 变音

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 国际音标1.重音2.音节3.变音 国际音标 1.重音 2.音节 3.变音

Adaptive LLM Transformer²

看到了一个不错的论文https://arxiv.org/pdf/2501.06252 TRANSFORMER-SQUARED: SELF-ADAPTIVE LLMS 挺有意思的,是一家日本AI公司SakanaAI的论文(我以前写过他们的不训练提升模型的能力的文章,感兴趣可以去翻)它家有Lion Jones坐镇…

优化代码性能:利用CPU缓存原理

在计算机的世界里,有一场如同龟兔赛跑般的速度较量,主角便是 CPU 和内存 。龟兔赛跑的故事大家都耳熟能详,兔子速度飞快,乌龟则慢吞吞的。在计算机中,CPU 就如同那敏捷的兔子,拥有超高的运算速度&#xff0…

linux 函数 sem_init () 信号量、sem_destroy()

&#xff08;1&#xff09; &#xff08;2&#xff09; 代码举例&#xff1a; #include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <semaphore.h> #include <unistd.h>sem_t semaphore;void* thread_function(void* arg) …

分库分表技术方案选型

一、MyCat 官方网站&#xff0c;技术文档 MyCat是一款由阿里Cobar演变而来的用于支持数据库读写分离、分片的数据库中间件。它基于MySQL协议&#xff0c;实现了MySQL的协议和能力&#xff0c;并作为代理层位于应用和数据库之间&#xff0c;可以隐藏底层数据库的复杂性。 原理…