《STL基础之vector、list、deque》

【vector、list、deque导读】vector、list、deque这三种序列式的容器,算是比较的基础容器,也是大家在日常开发中常用到的容器,因为底层用到的数据结构比较简单,笔者就将他们三者放到一起做下对比分析,介绍下基本用法,对比下三者的性能。

     

1. vector特性和原理   

     vector是个很基础的容器,其内部也就是一段连续的内存空间,具有动态扩容的能力,支持随机访问容器中的元素,查找元素的时间复杂度是O(1),插入、删除元素(除开尾部,而且vector还有备用空间的情况)会引起内存的拷贝,存在性能问题。vector提供常用的元素操作接口有:push_back、pop_back、erase、clear、insert。还有获取vector大小的size()接口、容量的capacity()接口。

    下面给出一些示例,演示vector是如何去操作元素的?

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;class A
{
public:A() {cout << "A()" << endl;}~A(){cout << "~A()" << endl;}A(const A& other){cout << "A(const A& other)" << endl;}A& operator=(const A& other){cout << "A& operator=(const A& other)" << endl;}A(const A&& other){cout << "A(const A&& other)" << endl;}A& operator= (const A&& other){cout << "A& operator= (const A&& other)" << endl;}
};int main()
{A aa;vector<A> iv(2, aa);std::cout << "size: " << iv.size() << " capacity: " << iv.capacity() << endl;std::cout << "after push back" << std::endl;iv.push_back(aa);std::cout << "size: " << iv.size() << " capacity: " << iv.capacity() << endl;return 0;
}

运行结果如下:

图片

    iv初始化的时候,往容器中插入了两个A类对象,调用了A的拷贝构造函数两次,此时iv元素个数和容量大小都是2,随后又往iv尾部插入一个A类对象,因为iv没有多余的剩余空间,那么此时vector另外寻找了个新的空间,大小为3,并把之前的两个A类对象拷贝到新的空间中去。为啥动态扩容之后,vector的大小变成了3,而不是原来大小的两倍?很炸裂,那我们就调试最新的STL源码。

图片

    很震惊,STL做了优化和改进,动态扩容不再是两倍的扩充了,而是根据元素的实际个数来扩充,所以以前老旧的观念需要改正。

std::cout << "after pop back" << std::endl;
iv.pop_back();
iv.pop_back();
std::cout << "size: " << iv.size() << " capacity: " << iv.capacity() << endl;
 

这个时候,我们在尾部弹出两个元素,那么此时又是一种什么结果?

图片

     弹出两个元素,引起A类对象的析构,元素个数变成了1,容量的大小依然是3。

     vector的删除接口erase,有按照范围删除、也有删除指定位置的元素,这两个接口的源码如下:


iterator erase(iterator first, iterator last)
{iterator i = copy(last, finish, first);destory(i, finish);finish = finish - (last - first);return first;
}iterator erase(iterator position)
{if (position + 1 != end())copy(position + 1, finish, position);--finish;destory(finish);return position;      
}

        可以看出无论是删除指定范围的元素还是删除指定位置的元素,都会涉及到元素的拷贝或者移动赋值;以下示例程序也能验证我们的结论。

std::cout << " after erase " << std::endl;
iv.erase(iv.begin(), iv.begin() + 1);
std::cout << "size: " << iv.size() << " capacity: " << iv.capacity() << endl;

图片

    从上述运行结果可以看到,删除iv容器中首个元素,引起了后面两个元素的移动,也即第二个元素挪到第一个位置去,第三个元素挪到第二个位置去。

2、 list特性和原理

     list背后的数据结构是环状双向链表,支持元素的双向遍历查找,因此list容器在元素查找上的时间复杂度为O(n),但是插入元素、删除元素的时间复杂度始终为O(1)。list支持的元素操作有push_front、push_back、erase、pop_front、pop_back、remove、unique、merge、reverse、sort,其实这些操作,无非就是对底层的链表进行头部插入、尾部删除、翻转、排序、合并等操作。


#include <iostream>
#include <list>int main()
{list<A> li;std::cout << li.size() << endl;A a;li.push_back(a);li.push_back(a);li.insert(li.begin(), a);li.erase(li.begin());return 0;
}

  运行结果:

图片

    可以看出往list容器中push元素或者insert元素,都会引起元素的拷贝构造。

3、 deque特性和原理

    deque 是由一段一段定量连续的空间构成,一旦需要在deque的前面或者尾端增加新空间,此时只需申请一段定量的连续空间,串接在deque的头部或者尾端。deque的整体架构图如下:

图片

       map并不是键值对map,而是一个指针数组,里面存储的是一个个指针,里面每个指针指向一段段连续的内存空间,这些分段的内存分别用来存储数据。虽然内存是分段的,但是给外部的表象是连续的内存空间,原因在于deque的迭代器设计的很巧妙。


template<class T, class Ref, class Ptr, size_t BufSiz>
struct __deque_iterator
{typedef T** map_pointer;  //指向管控中心maptypedef __deque_iterator self;T* cur;  //指向缓冲区当前的元素T* first; //指向缓冲区一个元素T* last; //指向缓冲区最后一个元素map_pointer node; //管控中心的节点
}

      假设我们在遍历元素的时候,走到了第二个缓冲区的末尾节点,此时,应该如何跳转到下一个缓冲区,且看deque的源码。


void set_node(map_pointer new_node)
{node = new_node;//下一个节点的首位元素便是firstfirst = *new_node;last = first + difference_type(buffer_size());
}self& operator++()
{++cur;if (cur == last){//跳转到下一个节点set_node(node + 1);cur = first;}return *this;
}

     好,再验证下deque插入元素,是否会涉及到插入对象的拷贝。


A a;
deque<A> idque(2, a);
idque.push_back(a);
idque.push_front(a);
idque.insert(idque.begin(), a);
idque.insert(idque.end(), a);

图片

      在头部、尾部插入元素,只会拷贝当前的对象,并不会涉及到其它对象的拷贝或者移动。那如果在容器的中间端插入对象呢?


cout << "after insert" << endl;
idque.insert(idque.begin() + 2, a);

图片

    可以清晰看到,在中间部位插入对象,还是会影响到其它元素的移动,现在新版的STL倒是做了优化和改进,使用移动构造或者移动赋值的方式去搬移对象,而不是单纯地拷贝构造或赋值。

4、 性能比对

int main()
{// 获取当前时间作为示例auto start = std::chrono::system_clock::now();A a;deque<A> idque;time_t t1 = time(NULL);for (int i = 0; i < 100 * 10000; ++i){idque.push_front(a);}// 计算差值auto end = std::chrono::system_clock::now();auto duration = end - start;cout << "deque: " << duration.count() << endl;list<A> li;start = std::chrono::system_clock::now();for (int i = 0; i < 100 * 10000; ++i){li.push_back(a);}end = std::chrono::system_clock::now();duration = end - start;cout << "list: " << duration.count() << endl;vector<A> iv;start = std::chrono::system_clock::now();for (int i = 0; i < 100 * 10000; ++i){iv.push_back(a);}end = std::chrono::system_clock::now();duration = end - start;cout << "vector: " << duration.count() << endl;return 0;
}

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/68696.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows中本地组策略编辑器gpedit.msc打不开/微软远程桌面无法复制粘贴

目录 背景 解决gpedit.msc打不开 解决复制粘贴 剪贴板的问题 启用远程桌面剪贴板与驱动器 重启RDP剪贴板监视程序 以上都不行&#xff1f;可能是操作被Win11系统阻止 最后 背景 远程桌面无法复制粘贴&#xff0c;需要查看下主机策略组设置&#xff0c;结果按WinR输入…

高精度加法乘法

高精度加法&乘法都是把数字转化成数组进行运算&#xff0c;存储 高精度加法 建议多在纸上画画&#xff0c;梳理思路 代码实现 输入字符串 //初始化数组存储 int a[250]{0}; int b[250]{0}; int c[251]{0}; //定义字符串&#xff0c;输入字符串 string s1,s2; getline(c…

Python 列表思维导图

Python 列表思维导图 腾讯云盘下载连接 https://share.weiyun.com/Ri6bUJed

获取snmp oid的小方法1(随手记)

snmpwalk遍历设备的mib # snmpwalk -v <SNMP version> -c <community-id> <IP> . snmpwalk -v 2c -c test 192.168.100.201 .根据获取的值&#xff0c;找到某一个想要的值的oid # SNMPv2-MIB::sysName.0 STRING: test1 [rootzabbix01 fonts]# snmpwalk -v…

【leetcode练习·二叉树】计算完全二叉树的节点数

本文参考labuladong算法笔记[拓展&#xff1a;如何计算完全二叉树的节点数 | labuladong 的算法笔记] 如果让你数一下一棵普通二叉树有多少个节点&#xff0c;这很简单&#xff0c;只要在二叉树的遍历框架上加一点代码就行了。 但是&#xff0c;力扣第第 222 题「完全二叉树的…

WebStorm安装及配置迁移

一、安装 官方下载安装包 WebStorm&#xff1a;JetBrains 出品的 JavaScript 和 TypeScript IDE 适用于2024版本及以下 按需安装后重启电脑 运行WebStorm,注意不要选择大陆地区&#xff0c;语言不选择中文&#xff0c;运行激活文件 二、配置迁移 根据已有软件导出相关配置…

ARM内核:嵌入式时代的核心引擎

引言 在当今智能设备无处不在的时代&#xff0c;ARM&#xff08;Advanced RISC Machines&#xff09;处理器凭借其高性能、低功耗的特性&#xff0c;成为智能手机、物联网设备、汽车电子等领域的核心引擎。作为精简指令集&#xff08;RISC&#xff09;的典范&#xff0c;ARM核…

离线大模型-通义千问

关部署离线模型的教程就不写了&#xff0c;百度一搜一大堆 Kamailio介绍 1. Kamailio介绍 user: 您了解kamailio吗&#xff1f;assistant: 是的&#xff0c;我了解Kamailio。Kamailio是一个开源的SIP服务器和代理&#xff0c;用于处理VoIP&#xff08;Voice over Internet…

Hypium+python鸿蒙原生自动化安装配置

Hypiumpython自动化搭建 文章目录 Python安装pip源配置HDC安装Hypium安装DevEco Testing Hypium插件安装及使用方法​​​​​插件安装工程创建区域 Python安装 推荐从官网获取3.10版本&#xff0c;其他版本可能出现兼容性问题 Python下载地址 下载64/32bitwindows安装文件&am…

细说机器学习算法之ROC曲线用于模型评估

系列文章目录 第一章&#xff1a;Pyhton机器学习算法之KNN 第二章&#xff1a;Pyhton机器学习算法之K—Means 第三章&#xff1a;Pyhton机器学习算法之随机森林 第四章&#xff1a;Pyhton机器学习算法之线性回归 第五章&#xff1a;Pyhton机器学习算法之有监督学习与无监督…

ROS_noetic-打印hello(√)

笔者创建的路径如下 进入到src&#xff0c; catkin_create_pkg helloworld roscpp rospy std_msgs Helloworld-C hello_C.cpp #include "ros/ros.h" int main(int argc, char *argv[]) { //执行 ros 节点初始化 ros::init(argc,argv,"hello"); //创…

冲刺蓝桥杯之速通vector!!!!!

文章目录 知识点创建增删查改 习题1习题2习题3习题4&#xff1a;习题5&#xff1a; 知识点 C的STL提供已经封装好的容器vector&#xff0c;也可叫做可变长的数组&#xff0c;vector底层就是自动扩容的顺序表&#xff0c;其中的增删查改已经封装好 创建 const int N30; vecto…

Golang 并发机制-2:Golang Goroutine 和竞争条件

在今天的软件开发中&#xff0c;我们正在使用并发的概念&#xff0c;它允许一次执行多个任务。在Go编程中&#xff0c;理解Go例程是至关重要的。本文试图详细解释什么是例程&#xff0c;它们有多轻&#xff0c;通过简单地使用“go”关键字创建它们&#xff0c;以及可能出现的竞…

C++并发编程指南07

文章目录 [TOC]5.1 内存模型5.1.1 对象和内存位置图5.1 分解一个 struct&#xff0c;展示不同对象的内存位置 5.1.2 对象、内存位置和并发5.1.3 修改顺序示例代码 5.2 原子操作和原子类型5.2.1 标准原子类型标准库中的原子类型特殊的原子类型备选名称内存顺序参数 5.2.2 std::a…

智慧园区如何融合五大技术实现全方位智能管理与服务创新

内容概要 在现代社会&#xff0c;智慧园区正逐渐成为管理与服务创新的风向标。以快鲸智慧园区管理系统为例&#xff0c;它为园区的数字化管理提供了一种全新的模式。该系统的核心在于如何充分应用物联网技术&#xff0c;自动化与信息化的结合&#xff0c;使得园区能够实现实时…

JxBrowser 7.41.7 版本发布啦!

JxBrowser 7.41.7 版本发布啦&#xff01; • 已更新 #Chromium 至更新版本 • 实施了多项质量改进 &#x1f517; 点击此处了解更多详情。 &#x1f193; 获取 30 天免费试用。

DeepSeek R1-Zero vs. R1:强化学习推理的技术突破与应用前景

&#x1f4cc; 引言&#xff1a;AI 推理的新时代 近年来&#xff0c;大语言模型&#xff08;LLM&#xff09; 的规模化扩展成为 AI 研究的主流方向。然而&#xff0c;LLM 的扩展是否真的能推动 通用人工智能&#xff08;AGI&#xff09; 的实现&#xff1f;DeepSeek 推出的 R1…

python学opencv|读取图像(四十七)使用cv2.bitwise_not()函数实现图像按位取反运算

【0】基础定义 按位与运算&#xff1a;两个等长度二进制数上下对齐&#xff0c;全1取1&#xff0c;其余取0。按位或运算&#xff1a;两个等长度二进制数上下对齐&#xff0c;有1取1&#xff0c;其余取0。 按位取反运算&#xff1a;一个二进制数&#xff0c;0变1,1变0。 【1】…

第十四讲 JDBC数据库

1. 什么是JDBC JDBC&#xff08;Java Database Connectivity&#xff0c;Java数据库连接&#xff09;&#xff0c;它是一套用于执行SQL语句的Java API。应用程序可通过这套API连接到关系型数据库&#xff0c;并使用SQL语句来完成对数据库中数据的查询、新增、更新和删除等操作…

低代码系统-产品架构案例介绍、轻流(九)

轻流低代码产品定位为零代码产品&#xff0c;试图通过搭建来降低企业成本&#xff0c;提升业务上线效率。 依旧是从下至上&#xff0c;从左至右的顺序 名词概述运维层底层系统运维层&#xff0c;例如上线、部署等基础服务体系内置的系统能力&#xff0c;发消息、组织和权限是必…