【Pandas】pandas Series cumsum

Pandas2.2 Series

Computations descriptive stats

方法描述
Series.abs()用于计算 Series 中每个元素的绝对值
Series.all()用于检查 Series 中的所有元素是否都为 True 或非零值(对于数值型数据)
Series.any()用于检查 Series 中是否至少有一个元素为 True 或非零值(对于数值型数据)
Series.autocorr()用于计算 Series 的自相关系数
Series.between()用于检查 Series 中的每个元素是否在指定的两个值之间(包括边界值)
Series.clip()用于将 Series 中的元素限制在指定的上下限之间
Series.corr()用于计算两个 Series 之间的相关系数
Series.count()用于计算 Series 中非 NA/null 值的数量
Series.cov(other[, min_periods, ddof])用于计算两个 Series 之间的协方差
Series.cummax([axis, skipna])用于计算 Series 中元素的累积最大值
Series.cummin([axis, skipna])用于计算 Series 中元素的累积最小值
Series.cumprod([axis, skipna])用于计算 Series 中元素的累积乘积
Series.cumsum([axis, skipna])用于计算 Series 中元素的累积和

pandas.Series.cumsum

pandas.Series.cumsum 方法用于计算 Series 中元素的累积和。它会遍历 Series 的每个元素,并在每个位置返回到目前为止的所有元素的和。缺失值(如 NaN)会被跳过,但在第一个非缺失值之前的位置,结果将保持为 NaN。

参数
  • axis: {0 or ‘index’}, 默认为 0
    • 只接受 0 或 ‘index’,因为 Series 只有一个轴。
  • skipna: bool, 默认为 True
    • 是否跳过缺失值(NaN)。如果为 False,则在遇到 NaN 时,累积和也将为 NaN。
  • *args, **kwargs: 其他参数,通常不需要指定。
返回值
  • Series: 包含累积和的新 Series
示例及结果
示例 1: 默认参数(skipna=True
import pandas as pd# 创建一个包含一些数值和缺失值的 Series
s = pd.Series([1, 2, None, 3, 4, None, 5])# 使用 cumsum 方法计算累积和,默认 skipna=True
cumsum_result = s.cumsum()print(f"Original Series: {s}")
print(f"Cumulative Sum (skipna=True): {cumsum_result}")
输出结果:
Original Series: 0    1.0
1    2.0
2    NaN
3    3.0
4    4.0
5    NaN
6    5.0
dtype: float64
Cumulative Sum (skipna=True): 0     1.0
1     3.0
2     NaN
3     6.0
4    10.0
5     NaN
6    15.0
dtype: float64

在这个例子中,原始 Series s 包含一些数值和缺失值。使用 cumsum 方法后,返回的结果是一个新的 Series,其中每个位置的值是到该位置为止的所有元素的和。注意:

  • 在第一个非缺失值之前的位置(即索引 2),结果为 NaN。
  • 在索引 3 处,累积和为 6(1 + 2 + 3)。
  • 在索引 4 处,累积和为 10(1 + 2 + 3 + 4)。
  • 在索引 5 处,由于当前值为 NaN,累积和保持为上一个非缺失值的和(即 10)。
  • 最后,在索引 6 处,累积和更新为 15(1 + 2 + 3 + 4 + 5)。
示例 2: skipna=False
# 使用 cumsum 方法计算累积和,skipna=False
cumsum_result_no_skipna = s.cumsum(skipna=False)print(f"Cumulative Sum (skipna=False): {cumsum_result_no_skipna}")
输出结果:
Cumulative Sum (skipna=False): 0    1.0
1    3.0
2    NaN
3    NaN
4    NaN
5    NaN
6    NaN
dtype: float64

在这个示例中,当 skipna=False 时,累积和在遇到第一个 NaN 后将保持为 NaN。

总结
  • axis: 对于 Series,axis 参数默认为 0 或 ‘index’,且不能更改。
  • skipna: 控制是否跳过 NaN 值,默认为 True。

希望这能帮助你更好地理解 Series.cumsum 方法的参数和行为。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/68667.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第十四讲 JDBC数据库

1. 什么是JDBC JDBC(Java Database Connectivity,Java数据库连接),它是一套用于执行SQL语句的Java API。应用程序可通过这套API连接到关系型数据库,并使用SQL语句来完成对数据库中数据的查询、新增、更新和删除等操作…

低代码系统-产品架构案例介绍、轻流(九)

轻流低代码产品定位为零代码产品,试图通过搭建来降低企业成本,提升业务上线效率。 依旧是从下至上,从左至右的顺序 名词概述运维层底层系统运维层,例如上线、部署等基础服务体系内置的系统能力,发消息、组织和权限是必…

第一届“启航杯”网络安全挑战赛WP

misc PvzHE 去这个文件夹 有一张图片 QHCTF{300cef31-68d9-4b72-b49d-a7802da481a5} QHCTF For Year 2025 攻防世界有一样的 080714212829302316092230 对应Q 以此类推 QHCTF{FUN} 请找出拍摄地所在位置 柳城 顺丰 forensics win01 这个软件 云沙盒分析一下 md5 ad4…

基于Python的人工智能患者风险评估预测模型构建与应用研究(上)

一、引言 1.1 研究目标与内容 本研究旨在运用 Python 语言,整合多种人工智能技术,构建高精度、高可靠性且具有良好可解释性的患者风险评估预测模型,为医疗领域的临床决策提供强有力的支持。具体研究内容涵盖以下几个方面: 人工智能技术在风险评估中的应用研究:深入剖析机…

unity学习24:场景scene相关生成,加载,卸载,加载进度,异步加载场景等

目录 1 场景数量 SceneManager.sceneCount 2 直接代码生成新场景 SceneManager.CreateScene 3 场景的加载 3.1 用代码加载场景,仍然build setting里先加入配置 3.2 卸载场景 SceneManager.UnloadSceneAsync(); 3.3 同步加载场景 SceneManager.LoadScene 3.3.…

每日一题——序列化二叉树

序列化二叉树 BM39 序列化二叉树题目描述序列化反序列化 示例示例1示例2 解题思路序列化过程反序列化过程 代码实现代码说明复杂度分析总结 BM39 序列化二叉树 题目描述 请实现两个函数,分别用来序列化和反序列化二叉树。二叉树的序列化是将二叉树按照某种遍历方式…

Go学习:类型转换需注意的点 以及 类型别名

目录 1. 类型转换 2. 类型别名 1. 类型转换 在从前的学习中,知道布尔bool类型变量只有两种值true或false,C/C、Python、JAVA等编程语言中,如果将布尔类型bool变量转换为整型int变量,通常采用 “0为假,非0为真”的方…

CF 766A.Mahmoud and Longest Uncommon Subsequence(Java实现)

题目分析 (小何同学语文不太好,看这个题弯弯绕绕,看不懂一点,哈哈哈。)在尝试示例中分析之后,题目的意思大概就是,两个字符串相同就输出-1,不同就输出最长的那个字符串长度 思路分析 数据输入存值之后&…

大数据相关职位介绍之一(数据分析,数据开发,数据产品经理,数据运营)

大数据相关职位介绍之一 随着大数据、人工智能(AI)和机器学习的快速发展,数据分析与管理已经成为各行各业的重要组成部分。从互联网公司到传统行业的数字转型,数据相关职位在中国日益成为推动企业创新和提升竞争力的关键力量。以…

【力扣系列题目】最后一块石头的重量 分割回文串 验证回文串 等差数列划分{最大堆 背包 动态规划}

文章目录 七、最后一块石头的重量最后一块石头的重量【堆】[最后一块石头的重量 II](https://leetcode.cn/problems/last-stone-weight-ii/)【背包】 八、分割回文串分割回文串【分割子串方案数量】[分割回文串 II](https://leetcode.cn/problems/omKAoA/)【最少分割次数】[分割…

go gin配置air

一、依赖下载 安装最新,且在你工作区下进行安装,我的是D:/GO是我的工作区,所有项目都在目录下的src, go install github.com/air-verse/airlatest 如果出现类似报错: 将图中第三行 github.com/air-verse/air 替换最…

读书笔记--分布式服务架构对比及优势

本篇是在上一篇的基础上,主要对共享服务平台建设所依赖的分布式服务架构进行学习,主要记录和思考如下,供大家学习参考。随着企业各业务数字化转型工作的推进,之前在传统的单一系统(或单体应用)模式中&#…

openRv1126 AI算法部署实战之——ONNX模型部署实战

在RV1126开发板上部署ONNX算法,实时目标检测RTSP传输。视频演示地址 rv1126 yolov5 实时目标检测 rtsp传输_哔哩哔哩_bilibili 一、准备工作 1.从官网下载YOLOv5-v7.0工程(YOLOv5的第7个版本) 手动在线下载: Releases ultraly…

【C++题解】1055. 求满足条件的整数个数

欢迎关注本专栏《C从零基础到信奥赛入门级(CSP-J)》 问题:1055. 求满足条件的整数个数 类型:简单循环 题目描述: 在 1∼n 中,找出能同时满足用 3 除余 2 ,用 5 除余 3 ,用 7 除余…

亚博microros小车-原生ubuntu支持系列:17 gmapping

前置依赖 先看下亚博官网的介绍 Gmapping简介 gmapping只适用于单帧二维激光点数小于1440的点,如果单帧激光点数大于1440,那么就会出【[mapping-4] process has died】 这样的问题。 Gmapping是基于滤波SLAM框架的常用开源SLAM算法。 Gmapping基于RBp…

R语言统计分析——ggplot2绘图4——刻面

参考资料:R语言实战【第2版】 如果组在途中并排出现而不是重叠为单一的图形,关系就是清晰的。我们可以使用facet_wrap()函数和facet_grid()函数创建网格图形(在ggplot2中也称刻面图),相关语法如下: 语法结…

AI大模型开发原理篇-9:GPT模型的概念和基本结构

基本概念 生成式预训练模型 GPT(Generative Pre-trained Transformer)模型 是由 OpenAI 开发的基于 Transformer 架构的自然语言处理(NLP)模型,专门用于文本生成任务。它的设计理念在于通过大规模的预训练来学习语言模…

使用Edu邮箱申请一年免费的.me域名

所需材料:公立Edu教育邮箱一枚(P.S:该服务不支持所有的Edu教育邮箱,仅支持比较知名的院校) 说到域名,.me这个后缀可谓是个性十足,适合个人网站、博客等。.me是黑山的国家顶级域名(c…

【RocketMQ 存储】- RocketMQ存储类 MappedFile

文章目录 1. 前言2. ReferenceResource3. MappedFile3.1 核心参数3.2 构造器3.3 消息追加3.4 消息刷盘3.5 消息提交3.6 截取一段 ByteBuffer3.7 cleanup 释放堆外内存3.8 destroy 销毁 mappedFile3.9 warmMappedFile 4. 小结 本文章基于 RocketMQ 4.9.3 1. 前言 上一篇文章中我…

Autosar-Os是怎么运行的?(时间保护)

写在前面: 入行一段时间了,基于个人理解整理一些东西,如有错误,欢迎各位大佬评论区指正!!! 1.功能概述 AUTOSAR OS 的四大可定制类型凸显了时间保护(Timing Protection)…