1.缓存
1.1 什么是缓存?
越野车,山地自行车,都拥有"避震器",防止车体加速后因惯性,在酷似"U"字母的地形上飞跃,硬着陆导致的损害,像个弹簧一样;同样,实际开发中,系统也需要"避震器",防止过高的数据访问猛冲系统,导致其操作线程无法及时处理信息而瘫痪;这在实际开发中对企业讲,对产品口碑,用户评价都是致命的;所以企业非常重视缓存技术。
缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码。例如:
例1:static final ConcurrentHashMap<K,V> map = new ConcurrentHashMap<>(); 本地用于高并发例2:static final Cache<K,V> USER_CACHE = CacheBuilder.newBuilder().build(); 用于redis等缓存例3:static final Map<K,V> map = new HashMap(); 本地缓存
由于其被Static修饰,所以随着类的加载而被加载到内存之中,作为本地缓存,由于其又被final修饰,所以其引用(例3:map)和对象(例3:new HashMap())之间的关系是固定的,不能改变,因此不用担心赋值(=)导致缓存失效;
1.1.1 为什么要使用缓存?
一句话:因为速度快,好用
缓存数据存储于代码中,而代码运行在内存中,内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的服务器读写压力。实际开发过程中,企业的数据量,少则几十万,多则几千万,这么大数据量,如果没有缓存来作为"避震器",系统是几乎撑不住的,所以企业会大量运用到缓存技术。
但是缓存也会增加代码复杂度和运营的成本:
1.1.2 如何使用缓存
实际开发中,会构筑多级缓存来使系统运行速度进一步提升,例如:本地缓存与redis中的缓存并发使用
浏览器缓存:主要是存在于浏览器端的缓存
**应用层缓存:**可以分为tomcat本地缓存,比如之前提到的map,或者是使用redis作为缓存
**数据库缓存:**在数据库中有一片空间是 buffer pool,增改查数据都会先加载到mysql的缓存中
**CPU缓存:**当代计算机最大的问题是 cpu性能提升了,但内存读写速度没有跟上,所以为了适应当下的情况,增加了cpu的L1,L2,L3级的缓存
1.2 实战-添加商户缓存
在我们查询商户信息时,我们是直接操作从数据库中去进行查询的,大致逻辑是这样,直接查询数据库那肯定慢咯,所以我们需要增加缓存
@GetMapping("/{id}")
public Result queryShopById(@PathVariable("id") Long id) {//这里是直接查询数据库return shopService.queryById(id);
}
1.2.1 缓存模型与思路
标准的操作方式就是查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入redis。
1.2.2 代码如下
代码思路:如果缓存有,则直接返回,如果缓存不存在,则查询数据库,然后存入redis。
@Overridepublic Result queryById(Long id) {//1.从redis中查询商铺缓存String shopStr = stringRedisTemplate.opsForValue().get(RedisConstants.CACHE_SHOP_KEY + id);//2.判断缓存是否命中if (shopStr != null) {//3.如果命中,直接返回商铺信息Shop shop = JSONUtil.toBean(shopStr, Shop.class);return Result.ok(shop);}//4.如果未命中,根据id查询数据库Shop shop = getById(id);//5.判断店铺是否存在if (shop == null) {//6.若不存在,则报错,返回404return Result.fail("店铺不存在!");}//7.若存在,则将商铺信息写入redis,并返回商铺信息stringRedisTemplate.opsForValue().set(RedisConstants.CACHE_SHOP_KEY + id,JSONUtil.toJsonStr(shop));return Result.ok(shop);}
1.3 缓存更新策略
缓存更新是redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向redis插入太多数据,此时就可能会导致缓存中的数据过多,所以redis会对部分数据进行更新,或者把它叫为淘汰更合适。
**内存淘汰:**redis自动进行,当redis内存达到咱们设定的max-memery的时候,会自动触发淘汰机制,淘汰掉一些不重要的数据(可以自己设置策略方式)
**超时剔除:**当我们给redis设置了过期时间ttl之后,redis会将超时的数据进行删除,方便咱们继续使用缓存
**主动更新:**我们可以手动调用方法把缓存删掉,通常用于解决缓存和数据库不一致问题
1.3.1 数据库缓存不一致解决方案
由于我们的缓存的数据源来自于数据库,而数据库的数据是会发生变化的,因此,如果当数据库中数据发生变化,而缓存却没有同步,此时就会有一致性问题存在,其后果是:
用户使用缓存中的过时数据,就会产生类似多线程数据安全问题,从而影响业务,产品口碑等;怎么解决呢?有如下几种方案
Cache Aside Pattern 人工编码方式:缓存调用者在更新完数据库后再去更新缓存,也称之为双写方案
Read/Write Through Pattern : 由系统本身完成,数据库与缓存的问题交由系统本身去处理
Write Behind Caching Pattern :调用者只操作缓存,其他线程去异步处理数据库,实现最终一致
1.3.2 数据库和缓存不一致采用什么方案
综合考虑使用方案一,但是方案一调用者如何处理呢?这里有几个问题
操作缓存和数据库时有三个问题需要考虑:
如果采用第一个方案,那么假设我们每次操作数据库后,都操作缓存,但是中间如果没有人查询,那么这个更新动作实际上只有最后一次生效,中间的更新动作意义并不大,我们可以把缓存删除,等待再次查询时,将缓存中的数据加载出来
-
删除缓存还是更新缓存?
- 更新缓存:每次更新数据库都更新缓存,无效写操作较多
- 删除缓存:更新数据库时让缓存失效,查询时再更新缓存
-
如何保证缓存与数据库的操作的同时成功或失败?
- 单体系统,将缓存与数据库操作放在一个事务
- 分布式系统,利用TCC等分布式事务方案
应该具体操作缓存还是操作数据库,我们应当是先操作数据库,再删除缓存,原因在于,如果你选择第一种方案,在两个线程并发来访问时,假设线程1先来,他先把缓存删了,此时线程2过来,他查询缓存数据并不存在,此时他写入缓存,当他写入缓存后,线程1再执行更新动作时,实际上写入的就是旧的数据,新的数据被旧数据覆盖了。
-
先操作缓存还是先操作数据库?
-
先删除缓存,再操作数据库
- 正常情况:
-
异常情况下:
初始状态:
最终情况:
总结:这种情况发生的概率是挺大的,因为对于缓存的操作速度要比数据库的操作速度快很多。
-
先操作数据库,再删除缓存
正常情况:
初始状态:
此时恰好缓存失效:
最终状态:
总结:这种情况发生的概率是很低的,因为对于缓存的操作速度要比数据库的操作速度快很多。
综上所述:第二种方案胜出,即先操作数据库,再删除缓存。
1.4 实现商铺和缓存与数据库双写一致
核心思路如下:
修改ShopController中的业务逻辑,满足下面的需求:
根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间
根据id修改店铺时,先修改数据库,再删除缓存
修改重点代码1:修改ShopServiceImpl的queryById方法
设置redis缓存时添加过期时间
stringRedisTemplate.opsForValue().set(RedisConstants.CACHE_SHOP_KEY + id,JSONUtil.toJsonStr(shop),RedisConstants.CACHE_SHOP_TTL,TimeUnit.MINUTES);
修改重点代码2
代码分析:通过之前的淘汰,我们确定了采用删除策略,来解决双写问题,当我们修改了数据之后,然后把缓存中的数据进行删除,查询时发现缓存中没有数据,则会从mysql中加载最新的数据,从而避免数据库和缓存不一致的问题
@Override@Transactional //记得要加上事务注解public Result update(Shop shop) {Long id = shop.getId();if (id == null) {return Result.fail("店铺id不能为空");}//1.更新数据库updateById(shop);//2.删除缓存stringRedisTemplate.delete(RedisConstants.CACHE_SHOP_KEY+shop.getId());return Result.ok();}