Qt编写RK3588视频播放器/支持RKMPP硬解/支持各种视音频文件和视频流/海康大华视频监控

一、前言

用ffmpeg做硬解码开发,参考自带的示例hw_decode.c即可,里面提供了通用的dxva2/d3d11va/vaapi这种系统层面封装的硬解码,也就是无需区分用的何种显卡,操作系统自动调度,基本上满足了各种场景的需要,这种方式很通用也便捷,但是一些特殊场景必须要用指定硬解码器名称的方式,比如指定 h264_qsv/h264_cuvid/h264_vaapi hevc_qsv/hevc_cuvid/hevc_vaapi/h264_mediacodec/h264_rkmpp,在瑞星微显卡的嵌入式开发板上面,基本上用的就是这种方式,视频源是264则指定h264_rkmpp,视频源是265则指定hevc_rkmpp来解码,当然这是有个前提的,并不是你指定这个解码器名称后初始化就能成功的,一定要当时编译ffmpeg的时候把对应功能打开,也不是你打开就能正常编译成功的,又有个前提是环境中要有对应的依赖都存在,编译器能正常找到对应的硬解的依赖。

二、效果图

在这里插入图片描述
在这里插入图片描述

三、相关地址

  1. 国内站点:https://gitee.com/feiyangqingyun
  2. 国际站点:https://github.com/feiyangqingyun
  3. 个人作品:https://blog.csdn.net/feiyangqingyun/article/details/97565652
  4. 文件地址:https://pan.baidu.com/s/1d7TH_GEYl5nOecuNlWJJ7g 提取码:01jf 文件名:bin_video_demo。

四、功能特点

4.1 基础功能

  1. 支持各种音频视频文件格式,比如mp3、wav、mp4、asf、rm、rmvb、mkv等。
  2. 支持本地摄像头设备和本地桌面采集,支持多设备和多屏幕。
  3. 支持各种视频流格式,比如rtp、rtsp、rtmp、http、udp等。
  4. 本地音视频文件和网络音视频文件,自动识别文件长度、播放进度、音量大小、静音状态等。
  5. 文件可以指定播放位置、调节音量大小、设置静音状态等。
  6. 支持倍速播放文件,可选0.5倍、1.0倍、2.5倍、5.0倍等速度,相当于慢放和快放。
  7. 支持开始播放、停止播放、暂停播放、继续播放。
  8. 支持抓拍截图,可指定文件路径,可选抓拍完成是否自动显示预览。
  9. 支持录像存储,手动开始录像、停止录像,部分内核支持暂停录像后继续录像,跳过不需要录像的部分。
  10. 支持无感知切换循环播放、自动重连等机制。
  11. 提供播放成功、播放完成、收到解码图片、收到抓拍图片、视频尺寸变化、录像状态变化等信号。
  12. 多线程处理,一个解码一个线程,不卡主界面。

4.2 特色功能

  1. 同时支持多种解码内核,包括qmedia内核(Qt4/Qt5/Qt6)、ffmpeg内核(ffmpeg2/ffmpeg3/ffmpeg4/ffmpeg5/ffmpeg6)、vlc内核(vlc2/vlc3)、mpv内核(mpv1/mp2)、mdk内核、海康sdk、easyplayer内核等。
  2. 非常完善的多重基类设计,新增一种解码内核只需要实现极少的代码量,就可以应用整套机制,极易拓展。
  3. 同时支持多种画面显示策略,自动调整(原始分辨率小于显示控件尺寸则按照原始分辨率大小显示,否则等比缩放)、等比缩放(永远等比缩放)、拉伸填充(永远拉伸填充)。所有内核和所有视频显示模式下都支持三种画面显示策略。
  4. 同时支持多种视频显示模式,句柄模式(传入控件句柄交给对方绘制控制)、绘制模式(回调拿到数据后转成QImage用QPainter绘制)、GPU模式(回调拿到数据后转成yuv用QOpenglWidget绘制)。
  5. 支持多种硬件加速类型,ffmpeg可选dxva2、d3d11va等,vlc可选any、dxva2、d3d11va,mpv可选auto、dxva2、d3d11va,mdk可选dxva2、d3d11va、cuda、mft等。不同的系统环境有不同的类型选择,比如linux系统有vaapi、vdpau,macos系统有videotoolbox。
  6. 解码线程和显示窗体分离,可指定任意解码内核挂载到任意显示窗体,动态切换。
  7. 支持共享解码线程,默认开启并且自动处理,当识别到相同的视频地址,共享一个解码线程,在网络视频环境中可以大大节约网络流量以及对方设备的推流压力。国内顶尖视频厂商均采用此策略。这样只要拉一路视频流就可以共享到几十个几百个通道展示。
  8. 自动识别视频旋转角度并绘制,比如手机上拍摄的视频一般是旋转了90度的,播放的时候要自动旋转处理,不然默认是倒着的。
  9. 自动识别视频流播放过程中分辨率的变化,在视频控件上自动调整尺寸。比如摄像机可以在使用过程中动态配置分辨率,当分辨率改动后对应视频控件也要做出同步反应。
  10. 音视频文件无感知自动切换循环播放,不会出现切换期间黑屏等肉眼可见的切换痕迹。
  11. 视频控件同时支持任意解码内核、任意画面显示策略、任意视频显示模式。
  12. 视频控件悬浮条同时支持句柄、绘制、GPU三种模式,非绝对坐标移来移去。
  13. 本地摄像头设备支持指定设备名称、分辨率、帧率进行播放。
  14. 本地桌面采集支持设定采集区域、偏移值、指定桌面索引、帧率、多个桌面同时采集等。还支持指定窗口标题采集固定窗口。
  15. 录像文件同时支持打开的视频文件、本地摄像头、本地桌面、网络视频流等。
  16. 瞬间响应打开和关闭,无论是打开不存在的视频或者网络流,探测设备是否存在,读取中的超时等待,收到关闭指令立即中断之前的操作并响应。
  17. 支持打开各种图片文件,支持本地音视频文件拖曳播放。
  18. 视频流通信方式可选tcp/udp,有些设备可能只提供了某一种协议通信比如tcp,需要指定该种协议方式打开。
  19. 可设置连接超时时间(视频流探测用的超时时间)、读取超时时间(采集过程中的超时时间)。
  20. 支持逐帧播放,提供上一帧/下一帧函数接口,可以逐帧查阅采集到的图像。
  21. 音频文件自动提取专辑信息比如标题、艺术家、专辑、专辑封面,自动显示专辑封面。
  22. 视频响应极低延迟0.2s左右,极速响应打开视频流0.5s左右,专门做了优化处理。
  23. 支持H264/H265编码(现在越来越多的监控摄像头是H265视频流格式)生成视频文件,内部自动识别切换编码格式。
  24. 支持用户信息中包含特殊字符(比如用户信息中包含+#@等字符)的视频流播放,内置解析转义处理。
  25. 支持滤镜,各种水印及图形效果,支持多个水印和图像,可以将OSD标签信息和各种图形信息写入到MP4文件。
  26. 支持视频流中的各种音频格式,AAC、PCM、G.726、G.711A、G.711Mu、G.711ulaw、G.711alaw、MP2L2等都支持,推荐选择AAC兼容性跨平台性最好。
  27. 内核ffmpeg采用纯qt+ffmpeg解码,非sdl等第三方绘制播放依赖,gpu绘制采用qopenglwidget,音频播放采用qaudiooutput。
  28. 内核ffmpeg和内核mdk支持安卓,其中mdk支持安卓硬解码,性能非常凶残。
  29. 可以切换音视频轨道,也就是节目通道,可能ts文件带了多个音视频节目流,可以分别设置要播放哪一个,可以播放前设置好和播放过程中动态设置。
  30. 可以设置视频旋转角度,可以播放前设置好和播放过程中动态改变。
  31. 视频控件悬浮条自带开始和停止录像切换、声音静音切换、抓拍截图、关闭视频等功能。
  32. 音频组件支持声音波形值数据解析,可以根据该值绘制波形曲线和柱状声音条,默认提供了声音振幅信号。
  33. 标签和图形信息支持三种绘制方式,绘制到遮罩层、绘制到图片、源头绘制(对应信息可以存储到文件)。
  34. 通过传入一个url地址,该地址可以带上通信协议、分辨率、帧率等信息,无需其他设置。
  35. 保存视频到文件支持三种策略,自动处理、仅限文件、全部转码,转码策略支持自动识别、转264、转265,编码保存支持指定分辨率缩放或者等比例缩放。比如对保存文件体积有要求可以指定缩放后再存储。
  36. 支持加密保存文件和解密播放文件,可以指定秘钥文本。
  37. 提供的监控布局类支持64通道同时显示,还支持各种异型布局,比如13通道,手机上6行2列布局。各种布局可以自由定义。
  38. 支持电子放大,在悬浮条切换到电子放大模式,在画面上选择需要放大的区域,选取完毕后自动放大,再次切换放大模式可以复位。
  39. 各组件中极其详细的打印信息提示,尤其是报错信息提示,封装的统一打印格式。针对现场复杂的设备环境测试极其方便有用,相当于精确定位到具体哪个通道哪个步骤出错。
  40. 同时提供了简单示例、视频播放器、多画面视频监控、监控回放、逐帧播放、多屏渲染等单独窗体示例,专门演示对应功能如何使用。
  41. 监控回放可选不同厂家类型、回放时间段、用户信息、指定通道。支持切换回放进度。
  42. 可以从声卡设备下拉框选择声卡播放声音,提供对应的切换声卡函数接口。
  43. 支持编译到手机app使用,提供了专门的手机app布局界面,可以作为手机上的视频监控使用。
  44. 代码框架和结构优化到最优,性能强悍,注释详细,持续迭代更新升级。
  45. 源码支持windows、linux、mac、android等,支持各种国产linux系统,包括但不限于统信UOS/中标麒麟/银河麒麟等。还支持嵌入式linux。
  46. 源码支持Qt4、Qt5、Qt6,兼容所有版本。

4.3 视频控件

  1. 可动态添加任意多个osd标签信息,标签信息包括名字、是否可见、字号大小、文本文字、文本颜色、背景颜色、标签图片、标签坐标、标签格式(文本、日期、时间、日期时间、图片)、标签位置(左上角、左下角、右上角、右下角、居中、自定义坐标)。
  2. 可动态添加任意多个图形信息,比如人工智能算法解析后的图形区域信息直接发给视频控件即可。图形信息支持任意形状,直接绘制在原始图片上,采用绝对坐标。
  3. 图形信息包括名字、边框大小、边框颜色、背景颜色、矩形区域、路径集合、点坐标集合等。
  4. 每个图形信息都可指定三种区域中的一种或者多种,指定了的都会绘制。
  5. 内置悬浮条控件,悬浮条位置支持顶部、底部、左侧、右侧。
  6. 悬浮条控件参数包括边距、间距、背景透明度、背景颜色、文本颜色、按下颜色、位置、按钮图标代码集合、按钮名称标识集合、按钮提示信息集合。
  7. 悬浮条控件一排工具按钮可自定义,通过结构体参数设置,图标可选图形字体还是自定义图片。
  8. 悬浮条按钮内部实现了录像切换、抓拍截图、静音切换、关闭视频等功能,也可以自行在源码中增加自己对应的功能。
  9. 悬浮条按钮对应实现了功能的按钮,有对应图标切换处理,比如录像按钮按下后会切换到正在录像中的图标,声音按钮切换后变成静音图标,再次切换还原。
  10. 悬浮条按钮单击后都用名称唯一标识作为信号发出,可以自行关联响应处理。
  11. 悬浮条空白区域可以显示提示信息,默认显示当前视频分辨率大小,可以增加帧率、码流大小等信息。
  12. 视频控件参数包括边框大小、边框颜色、焦点颜色、背景颜色(默认透明)、文字颜色(默认全局文字颜色)、填充颜色(视频外的空白处填充黑色)、背景文字、背景图片(如果设置了图片优先取图片)、是否拷贝图片、缩放显示模式(自动调整、等比缩放、拉伸填充)、视频显示模式(句柄、绘制、GPU)、启用悬浮条、悬浮条尺寸(横向为高度、纵向为宽度)、悬浮条位置(顶部、底部、左侧、右侧)。

五、相关代码

QStringList VideoUtil::getHardware(const VideoCore &videoCore)
{QStringList list;list << "none";//ffmpeg建议用dxva2 / vlc建议用any / mpv建议用autoif (videoCore == VideoCore_FFmpeg) {//list << "qsv" << "cuda";} else if (videoCore == VideoCore_Vlc) {list << "any";} else if (videoCore == VideoCore_Mpv) {list << "auto";} else if (videoCore == VideoCore_Mdk) {
#if defined(Q_OS_WIN)list << "qsv" << "cuda" << "mft";
#endif} else if (videoCore == VideoCore_Qtav) {
#if defined(Q_OS_WIN)list << "qsv" << "cuda";
#endif}//因特尔显卡=vaapi/英伟达显卡=vdpau//安卓=mediacodec/树莓派=mmal/CUDA平台=nvdec/cuda/瑞星微=rkmpp
#if defined(Q_OS_WIN)list << "dxva2" << "d3d11va";
#elif defined(Q_OS_ANDROID)list << "mediacodec";
#elif defined(Q_OS_LINUX)list << "vaapi" << "vdpau" << "rkmpp";
#elif defined(Q_OS_MAC)list << "videotoolbox";
#endifreturn list;
}void FFmpegThreadHelper::initVideoCodec(AVCodecx **videoCodec, AVCodecID codecId, QString &videoCodecName, QString &hardware)
{//获取默认的解码器(*videoCodec) = avcodec_find_decoder(codecId);videoCodecName = (*videoCodec)->name;bool otherHardware = (hardware != "none" && hardware != "dxva2" && hardware != "d3d11va");if (!otherHardware) {return;}//264/265才能去启用系统层以外的硬解码if (videoCodecName != "h264" && videoCodecName != "hevc") {hardware = "none";return;}//指定硬解码器名称 h264_qsv/h264_cuvid/h264_vaapi hevc_qsv/hevc_cuvid/hevc_vaapi/h264_mediacodecQString name = QString("%1_%2").arg(videoCodecName).arg(hardware);(*videoCodec) = avcodec_find_decoder_by_name(name.toUtf8().constData());//如果硬解码器分配失败则立即切换到软解码if (!(*videoCodec)) {(*videoCodec) = avcodec_find_decoder(codecId);}
}bool FFmpegThreadHelper::initHardware(FFmpegThread *thread, AVCodecx *videoCodec, AVCodecContext *videoCodecCtx, const QString &hardware)
{
#if (FFMPEG_VERSION_MAJOR > 2)//根据名称自动寻找硬解码enum AVHWDeviceType type;QByteArray hwData = hardware.toUtf8();const char *hwName = hwData.constData();
#ifdef __arm__//发现嵌入式上低版本的库没有av_hwdevice_find_type_by_name函数
#if (FFMPEG_VERSION_MAJOR < 4)return false;
#elsetype = av_hwdevice_find_type_by_name(hwName);
#endif
#elsetype = av_hwdevice_find_type_by_name(hwName);
#endif//找到对应的硬解码格式thread->debug(0, "硬件加速", QString("名称: %1 数值: %2").arg(hardware).arg(type));FFmpegThreadHelper::hw_pix_fmt = FFmpegThreadHelper::find_fmt_by_hw_type(type, videoCodec);if (FFmpegThreadHelper::hw_pix_fmt == -1) {thread->debug(0, "加速失败", "");return false;}int result = -1;//创建硬解码设备AVBufferRef *hw_device_ref;result = av_hwdevice_ctx_create(&hw_device_ref, type, NULL, NULL, 0);if (result < 0) {thread->debug(result, "创建硬解", "av_hwdevice_ctx_create");return false;}//解码器格式赋值为硬解码videoCodecCtx->get_format = FFmpegThreadHelper::get_hw_format;videoCodecCtx->hw_device_ctx = av_buffer_ref(hw_device_ref);av_buffer_unref(&hw_device_ref);thread->debug(result, "初始硬解", QString("成功: %1").arg(hardware));return true;
#elsereturn false;
#endif
}AVPixelFormat FFmpegThreadHelper::hw_pix_fmt = AV_PIX_FMT_NONE;
AVPixelFormat FFmpegThreadHelper::get_hw_format(AVCodecContext *ctx, const AVPixelFormat *pix_fmts)
{const enum AVPixelFormat *p;for (p = pix_fmts; *p != -1; p++) {if (*p == hw_pix_fmt) {return *p;}}return AV_PIX_FMT_NONE;
}AVPixelFormat FFmpegThreadHelper::find_fmt_by_hw_type(const AVHWDeviceType &type, const AVCodec *codec)
{enum AVPixelFormat fmt = AV_PIX_FMT_NONE;
#if (FFMPEG_VERSION_MAJOR < 4)switch (type) {case AV_HWDEVICE_TYPE_DXVA2:fmt = AV_PIX_FMT_DXVA2_VLD;break;
#if (FFMPEG_VERSION_MAJOR > 2)case AV_HWDEVICE_TYPE_D3D11VA:fmt = AV_PIX_FMT_D3D11;break;
#endifcase AV_HWDEVICE_TYPE_VAAPI:fmt = AV_PIX_FMT_VAAPI;break;case AV_HWDEVICE_TYPE_VDPAU:fmt = AV_PIX_FMT_VDPAU;break;case AV_HWDEVICE_TYPE_VIDEOTOOLBOX:fmt = AV_PIX_FMT_VIDEOTOOLBOX;break;default:fmt = AV_PIX_FMT_NONE;break;}
#elsefor (int i = 0;; i++) {const AVCodecHWConfig *config = avcodec_get_hw_config(codec, i);if (!config) {break;}if (config->methods & AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX && config->device_type == type) {fmt = config->pix_fmt;break;}}
#endifreturn fmt;
}int FFmpegThreadHelper::decode(FFmpegThread *thread, AVCodecContext *avctx, AVPacket *packet, AVFrame *frameSrc, AVFrame *frameDst)
{int result = -1;
#ifdef videoffmpegQString flag = "硬解出错";
#if (FFMPEG_VERSION_MAJOR > 2)result = avcodec_send_packet(avctx, packet);if (result < 0) {thread->debug(result, flag, "avcodec_send_packet");return result;}while (result >= 0) {result = avcodec_receive_frame(avctx, frameSrc);if (result == AVERROR(EAGAIN) || result == AVERROR_EOF) {break;} else if (result < 0) {thread->debug(result, flag, "avcodec_receive_frame");break;}//将数据从GPU拷贝到CPU(这一步也比较耗CPU/最佳做法就是直接底层绘制显卡数据/目前不会)//result = av_hwframe_map(frameDst, frameSrc, 0);thread->lockFrame();result = av_hwframe_transfer_data(frameDst, frameSrc, 0);thread->unlockFrame();if (result < 0) {av_frame_unref(frameDst);av_frame_unref(frameSrc);thread->debug(result, flag, "av_hwframe_transfer_data");return result;}goto end;}
#endifreturn result;end://调用线程处理解码后的数据thread->decodeVideo2(packet);
#endifreturn result;
}int FFmpegThreadHelper::decode(FFmpegThread *thread, AVCodecContext *avctx, AVPacket *packet, AVFrame *frame, bool video)
{int result = -1;
#ifdef videoffmpegQString flag = video ? "视频解码" : "音频解码";
#if (FFMPEG_VERSION_MAJOR < 3)if (video) {avcodec_decode_video2(avctx, frame, &result, packet);if (result < 0) {thread->debug(result, flag, "avcodec_decode_video2");return result;}} else {avcodec_decode_audio4(avctx, frame, &result, packet);if (result < 0) {thread->debug(result, flag, "avcodec_decode_audio4");return result;}}goto end;
#elseresult = avcodec_send_packet(avctx, packet);//有些国标ts文件会是其他几种结果但是能正常解码if (result < 0 && (result != AVERROR(EAGAIN)) && (result != AVERROR_EOF)) {//if (result < 0) {thread->debug(result, flag, "avcodec_send_packet");return result;}result = 0;while (result >= 0) {if (video) {//这里为什么要加个锁/因为外面可能其他线程在调用getImage函数获取图片/数据可能有冲突thread->lockFrame();result = avcodec_receive_frame(avctx, frame);thread->unlockFrame();} else {result = avcodec_receive_frame(avctx, frame);}if (result == AVERROR(EAGAIN) || result == AVERROR_EOF) {//thread->debug(result, flag, "avcodec_receive_frame");break;} else if (result < 0) {thread->debug(result, flag, "avcodec_receive_frame");break;}goto end;}
#endifreturn result;end://调用线程处理解码后的数据if (video) {thread->decodeVideo2(packet);} else {thread->decodeAudio2(packet);}
#endifreturn result;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/64093.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

迎接全新的 Kotlin 支持 – K2 模式:基本信息

K2 模式有什么作用&#xff1f; K2 模式是 IntelliJ IDEA 中 Kotlin 支持的新实现&#xff0c;它可以提高 IDE 的稳定性&#xff0c;同时也会为支持未来 Kotlin 语言功能奠定基础。 K2 模式与 Kotlin K2 编译器有什么区别&#xff1f; K2 编译器负责编译 Kotlin 语言 2.0 或…

设计模式の建造者适配器桥接模式

文章目录 前言一、建造者模式二、适配器模式2.1、对象适配器2.2、接口适配器 三、桥接模式 前言 本篇是关于设计模式中建造者模式、适配器模式&#xff08;3种&#xff09;、以及桥接模式的笔记。 一、建造者模式 建造者模式是属于创建型设计模式&#xff0c;通过一步步构建一个…

智能引导小车充电系统设计(论文+源码)

1总体方案设计 在16*16点阵LED字符显示器的设计中&#xff0c;系统总体框架如图2.4所示&#xff0c;包括单片机主控模复位电路模块、晶振电路模块、按键电路模块、LED点阵驱动电路模块&#xff0c;蓝牙模块等构成。系统功能实现主要是利用系统在软件程序编写过程中&#xff0c…

PCIe学习笔记

PCIE高速串行数据总线 当拿到一块板子 比如你要用到PCIE 首先要看这块板子的原理图 一般原理图写的是 PCI express 表示PCIE 以下是Netfpga为例下的PCIE插口元件原理图 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/01dc604fbdc847e8998a978c83c7b2eb.png 一般主…

RabbitMQ实现消息发送接收——实战篇(路由模式)

本篇博文将带领大家一起学习rabbitMQ如何进行消息发送接收&#xff0c;我也是在写项目的时候边学边写&#xff0c;有不足的地方希望在评论区留下你的建议&#xff0c;我们一起讨论学习呀~ 需求背景 先说一下我的项目需求背景&#xff0c;社区之间可以进行物资借用&#xff0c…

The Past, Present and Future of Apache Flink

摘要&#xff1a;本文整理自阿里云开源大数据负责人王峰&#xff08;莫问&#xff09;在 Flink Forward Asia 2024上海站主论坛开场的分享&#xff0c;今年正值Flink开源项目诞生的第10周年&#xff0c;借此时机&#xff0c;王峰回顾了Flink在过去10年的发展历程以及 Flink社区…

城市大脑新型智慧城市数据中台建设方案

建设背景与现状 随着城市化进程的加速&#xff0c;城市数据呈现出爆炸式增长&#xff0c;但数据的整合、共享和利用却面临诸多挑战。信息孤岛、数据冗余、管理分散等问题日益突出&#xff0c;制约了智慧城市的发展。为了解决这些问题&#xff0c;构建城市大脑新型智慧城市数据…

力扣-图论-12【算法学习day.62】

前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向和记录学习过程&#xff08;例如想要掌握基础用法&#xff0c;该刷哪些题&#xff1f;&#xff09;我的解析也不会做的非常详细&#xff0c;只会提供思路和一些关键点&#xff0c;力扣上的大佬们的题解质量是非…

每日一站技術架構解析之-cc手機桌布網

# 網站技術架構解析&#xff1a; ## 一、整體架構概述https://tw.ccwallpaper.com是一個提供手機壁紙、桌布免費下載的網站&#xff0c;其技術架構設計旨在實現高效的圖片資源管理與用戶訪問體驗優化。 ### &#xff08;一&#xff09;前端展示 1. **HTML/CSS/JavaScript基礎構…

代码随想录算法训练营第三十二天|动态规划理论基础|LC509.肥波那些数|LC70.爬楼梯|LC746.使用最小花费爬楼梯

动态规划理论基础 解释&#xff1a;动态规划&#xff0c;英文&#xff1a;Dynamic Programming&#xff0c;简称DP&#xff1b;如果某一问题有很多重叠子问题&#xff0c;使用动态规划是最有效的。 动态规划五部曲&#xff1a; 1、确定dp数组&#xff08;dp table&#xff09;…

RabbitMQ Work Queues (工作队列模式) 使用案例

Hi~&#xff01;这里是奋斗的明志&#xff0c;很荣幸您能阅读我的文章&#xff0c;诚请评论指点&#xff0c;欢迎欢迎 ~~ &#x1f331;&#x1f331;个人主页&#xff1a;奋斗的明志 &#x1f331;&#x1f331;所属专栏&#xff1a;RabbitMQ &#x1f4da;本系列文章为个人学…

【安卓开发】【Android Studio】启动时报错“Unable to access Android SDK add-on list”

一、问题描述 在启动Android Studio时&#xff0c;软件报错&#xff1a;Unable to access Android SDK add-on list&#xff0c;报错截图如下&#xff1a; 二、原因及解决方法 初步推测是由于网络节点延迟&#xff0c;无法接入谷歌导致的。点击Cancel取消即可。

掌握线性回归:从简单模型到多项式模型的综合指南

目录 一、说明 二、简单线性回归 三、线性回归的评估指标 3.1 线性回归中的假设 四、从头开始的简单线性回归代码 五、多元线性回归 六、多元线性回归代码 七、多项式线性回归 八、多项式线性回归代码 九、应用单变量多项式回归 十、改变多项式的次数 十一、多列多项式回归 一、…

sqlmap详解

一.sqlmap -u URL --forms sqlmap -u http://192.168.11.136:1337//978345210/index.php --forms 针对特定的 URL 进行 SQL 注入测试&#xff0c;特别是针对表单&#xff08;form&#xff09;的 POST 注入 forms&#xff1a;这个参数告诉 sqlmap 解析并测试目标 URL 中的表单…

OBS + SRS:打造专业级直播环境的入门指南

OBS SRS&#xff1a;打造专业级直播环境的入门指南 1. OBS简介2. OBS核心功能详解2.1 场景&#xff08;Scenes&#xff09;管理2.2 源&#xff08;Sources&#xff09;控制2.3 混音器功能2.4 滤镜与特效2.5 直播控制面板 3. OBS推流到SRS服务器配置指南3.1 环境准备3.2 OBS推流…

Vue组件相关记录

Vue组件开发 非单文件组件 创建组件api Vue.extend({}) const student Vue.extend({template: <div>{{studentName}} - {{age}}</div>,data() {return {studentName: jjking,age: 12}}})new Vue({el: #app,//局部注册components: {student: student}})不能使用e…

【潜意识Java】深入理解 Java 面向对象编程(OOP)

目录 什么是面向对象编程&#xff08;OOP&#xff09;&#xff1f; 1. 封装&#xff08;Encapsulation&#xff09; Java 中的封装 2. 继承&#xff08;Inheritance&#xff09; Java 中的继承 3. 多态&#xff08;Polymorphism&#xff09; Java 中的多态 4. 抽象&…

【Linux SH脚本】LinuxCheck 应急检查信息脚本

LinuxCheck 1.下载地址 【Linux SH脚本】LinuxCheck 应急检查信息脚本 2.简介 LinuxCheck 是一个开源的自动化检查脚本&#xff0c;旨在快速检测 Linux 系统的安全配置和潜在问题。它支持多种发行版&#xff0c;能够扫描并生成详细的报告&#xff0c;涵盖用户管理、权限配置…

docker 部署 redis

docker 部署 redis 1. 下载 redis 镜像 # docker images | grep redis bitnami/redis 7.2.4-debian-11-r5 45de196aef7e 10 months ago 95.2MB2. docker-compose 部署 version: "3" services:redis:image: bitnami/redis:7.2.4-debian-11-…

相机测距原理

基础概念的回顾 焦距的定义 焦距是指透镜或镜头的光学中心&#xff08;通常是透镜的几何中心&#xff09;到其焦点的距离。 焦点是光线的交点&#xff0c;它指的是透镜或镜头聚焦所有入射光线后汇聚的位置。焦点的位置与透镜的曲率和光线的入射角度相关。就是说所有光线经过…