数字图像处理(15):图像平移

        (1)图像平移的基本原理:计算每个像素点的移动向量,并将这些像素按照指定的方向和距离进行移动。

        (2)平移向量包括水平和垂直分量,可以表示为(dx,dy),其中dx表示水平方向上的移动距离,dy表示垂直方向上的移动距离。

        (3)经过平移后,新图像中的每个像素点在原图像中都有对应的像素点。图像平移使用软件开发语言实现很容易,但在FGPA中实现需要考虑缓存。

        (4)matlab实现代码:

% 读取图像
% imread函数用于读取图像文件,支持多种格式如BMP、PNG、JPG等
img = imread('1_1920x1080.bmp');% 获取图像尺寸信息
% size函数返回矩阵的维度,对于彩色图像返回[高度 宽度 通道数]
[rows, cols, channels] = size(img);% 创建仿射变换矩阵
% 这里创建的是一个2x3的变换矩阵,用于定义图像的变换方式
% [1 0 300;   - 第一行表示x方向的变换:x'= 1*x + 0*y + 300
%  0 1 200]    - 第二行表示y方向的变换:y'= 0*x + 1*y + 200
% 这个矩阵表示将图像向右平移300像素,向下平移200像素
M = single([1, 0, 300; 0, 1, 200]);% 执行仿射变换
% affine2d函数用于创建二维仿射变换对象
tform = affine2d(M');  % 注意MATLAB中需要转置变换矩阵
% imwarp函数执行图像变换
% OutputView选项指定输出图像的大小,这里保持与原图相同
res = imwarp(img, tform, 'OutputView', imref2d([rows cols]));% 保存变换后的图像
% imwrite函数将图像保存到文件
% 第一个参数是图像数据,第二个参数是文件名
imwrite(res, 'result.bmp');% 显示结果图像
% figure创建新的图形窗口
figure;
% subplot用于创建子图,这里创建1x2的子图布局
subplot(1,2,1);
imshow(img);  % 显示原图
title('原始图像');
subplot(1,2,2);
imshow(res);  % 显示变换后的图像
title('变换后的图像');

        (5)FPGA仿真实现:

module move
(input   wire            clk         ,input   wire            reset_n     ,input   wire    [10:0]  img_width   ,input   wire    [10:0]  img_height  ,input   wire    [10:0]  img_x_start ,input   wire    [10:0]  img_y_start ,input   wire    [23:0]  img_data_i  ,output  wire            wr_ready    ,output  reg             valid_o     ,output  reg     [23:0]  img_data_o);reg [11:0]  h_cnt,v_cnt;always@(posedge clk or negedge reset_n)if(!reset_n)h_cnt <= 12'd0;else if(h_cnt == img_x_start + img_width - 1)h_cnt <= 12'd0;else h_cnt <= h_cnt + 12'd1;always@(posedge clk or negedge reset_n)if(!reset_n) v_cnt <= 12'd0;else if((v_cnt == img_y_start + img_height - 1) && (h_cnt == img_x_start + img_width - 1))v_cnt <= 12'd0;else if(h_cnt == img_x_start + img_width - 1)v_cnt <= v_cnt + 12'd1;else v_cnt <= v_cnt;assign wr_ready = (h_cnt >= img_x_start) && (v_cnt >= img_y_start);always@(posedge clk or negedge reset_n)if(!reset_n)valid_o <= 1'd0;else if((h_cnt < img_width) && (v_cnt < img_height))valid_o <= 1'd1;else valid_o <= 1'd0;always@(posedge clk or negedge reset_n)if(!reset_n)img_data_o <= 24'd0;else if((h_cnt < img_width) && (v_cnt < img_height) && (wr_ready))img_data_o <= img_data_i;else img_data_o <= 24'd0;endmodule

        微调读写测试文件后,仿真出来的图像(与matlab仿真结果一致):

        (6)FPGA实现

  • 查看配置进程:report_property -all [get_runs impl_1]
  1. 写入DDR3部分不需要修改,可以沿用,但是读取部分需要修改,首先是结束地址,需要适配新的y轴偏移量
    axi_ddr3_top    axi_ddr3_top_inst
    (.ddr3_clk            (clk_320M              ),.reset_n             (rst_n                 ),.pingpang            (1'd0                  ),.ui_clk              (ui_clk                ),.ui_rst              (ui_rst                ),.wr_b_addr           (32'd0                 ),.wr_e_addr           (IMG_LENGTH*IMG_WIDE*4 ),.wr_clk              (clk                   ),.data_wren           (data_wren             ),.data_wr             (data_wr               ),.wr_rst              (1'd0                  ),.rd_b_addr           (32'd0                 ),.rd_e_addr           (IMG_LENGTH*(IMG_WIDE-Y_OFFSET+1)*4 ),.rd_clk              (clk_vga_2             ),.data_rden           (lie >= Y_OFFSET       ),.data_rd             (data_rd               ),.rd_rst              (1'd0                  ),.read_enable         (1'd1                  ),.rd_data_valid       (),.ddr3_addr           (ddr3_addr             ),.ddr3_ba             (ddr3_ba               ),.ddr3_cas_n          (ddr3_cas_n            ),.ddr3_ck_n           (ddr3_ck_n             ),.ddr3_ck_p           (ddr3_ck_p             ),.ddr3_cke            (ddr3_cke              ),.ddr3_ras_n          (ddr3_ras_n            ),.ddr3_reset_n        (ddr3_reset_n          ),.ddr3_we_n           (ddr3_we_n             ),.ddr3_dq             (ddr3_dq               ),.ddr3_dqs_n          (ddr3_dqs_n            ),.ddr3_dqs_p          (ddr3_dqs_p            ),.init_calib_complete (init_calib_complete   ),.ddr3_cs_n           (ddr3_cs_n             ),.ddr3_dm             (ddr3_dm               ),.ddr3_odt            (ddr3_odt              )  
    );
  2. 缓存行数据,使用一个24位,深度位2048的双口RAM去存储从DDR3中读出来的数据,然后在VGA模块扫描到对应位置时输出,即可。

    hang_ram_2048  hang_ram_2048_inst 
    (.clka       (clk_vga_2                  ), .ena        (1'd1                       ), .wea        (lie >= Y_OFFSET && reading ), .addra      (buf_wr_addr                ), .dina       (line_buffer                ), .clkb       (clk_vga                    ), .enb        (hang >= X_OFFSET           ), .addrb      (buf_rd_addr                ), .doutb      (ram_dout                   )  
    );always @(posedge clk_vga_2 or negedge init_rst_n) beginif(!init_rst_n) beginlast_data_rd <= 16'd0;buf_wr_addr <= 11'd0;reading <= 1'b0;line_buffer <= 24'd0;endelse beginif(lie >= Y_OFFSET) beginif(!reading) begin  // 第一次读取last_data_rd <= data_rd;reading <= 1'b1;endelse begin  // 第二次读取line_buffer <= {last_data_rd, data_rd[15:8]};buf_wr_addr <= buf_wr_addr + 11'd1;reading <= 1'b0;endendelse beginbuf_wr_addr <= 11'd0;reading <= 1'd0;endend
    end// 行缓存读取控制,在这里实现偏移
    always @(posedge clk_vga or negedge init_rst_n) beginif(!init_rst_n) buf_rd_addr <= 11'd0;else beginif(display_valid)buf_rd_addr <= buf_rd_addr + 1'd1;else buf_rd_addr <= 11'd0;end
    endassign display_valid = (hang >= X_OFFSET)&&(lie >= Y_OFFSET);  
  3. 最终现象如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/63560.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于springboot+vue实现的剧本杀管理系统(源码+L文+ppt)4-114

摘 要 剧本杀管理系统是一个综合性平台&#xff0c;为剧本杀游戏爱好者、创作者及商家提供多方位服务。系统具备用户账号管理、剧本分类、预约、评价和论坛交流等核心功能。通过这个平台&#xff0c;用户可以便捷地浏览各类剧本信息&#xff0c;根据兴趣和时间安排进行预约&a…

Android开发-----Could not install Gradle distribution from- gradle

Could not install Gradle distribution from - gradle 这个通常是因为网络原因导致的&#xff0c;即使科学上网了&#xff0c;但是仍然不行。所以需要另辟蹊径。 打开gradle-wrapper.properties 原地址&#xff1a;distributionUrlhttps\://services.gradle.org/distributio…

FPGA工作原理、架构及底层资源

FPGA工作原理、架构及底层资源 文章目录 FPGA工作原理、架构及底层资源前言一、FPGA工作原理二、FPGA架构及底层资源 1.FPGA架构2.FPGA底层资源 2.1可编程输入/输出单元简称&#xff08;IOB&#xff09;2.2可配置逻辑块2.3丰富的布线资源2.4数字时钟管理模块(DCM)2.5嵌入式块 …

MATLAB中drawnow命令的作用和使用方法

MATLAB 中&#xff0c;drawnow 是一个非常有用的命令&#xff0c;它的主要功能是在图形绘制过程中强制 MATLAB 更新当前图形窗口。本文具体说明其作用和使用方法 文章目录 功能说明使用场景使用方法示例代码运行结果 总结 功能说明 更新图形&#xff1a; drawnow 会立即绘制所有…

HTML Input 文件上传功能全解析:从基础到优化

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

麒麟 V10 系统(arm64/aarch64)离线安装 docker 和 docker-compose

前期准备 查看操作系统版本&#xff0c;跟本文标题核对一下 uname -a查看操作系统架构 uname -m下载离线包 下载 docker 离线包 地址&#xff1a;https://download.docker.com/linux/static/stable/ 选择系统架构对应的文件目录&#xff1a;aarch64&#xff0c;我目前使用…

HarmonyOS(64) wrapBuilder 全局@Builder使用利器

WrapBuilder 全局Builder是什么什么时候使用wrapBuilderBuilder的限制参考资料 全局Builder是什么 局部Builder的定义方法如下&#xff1a; //定义局部Builder Builder MyBuilderFunction() {} //使用方法 this.MyBuilderFunction()全局Builder定义语法如下&#xff1a; //全…

怎么获取Java高并发经验与系统设计技能?

如何获得高并发经验&#xff1f; 这是系统邀请我回答的一个问题&#xff0c;由此也引发了我的一些思考&#xff1a;为什么人人都想要获得高并发经验&#xff1b;想拥有高并发系统设计技能&#xff1f; 其原因LZ认为主要有以下三点&#xff1a; 涨薪&#xff1a;有高并发系统设…

Spark实训

实训目的: 介绍本实训的基本内容,描述知识目标、,以及本实训的预期效果等。 1、知识目标 (1)了解spark概念、基础知识、spark处理的全周期,了解spark技术是新时代对人才的新要求。 (2)掌握Linux、hadoop、spark、hive集群环境的搭建、HDFS分布文件系统的基础知识与应用…

笔记:在WPF中BitmapSource都有哪些派生类,他们主要功能,使用方法,使用场景

一、目的&#xff1a;在WPF中BitmapSource都有哪些派生类&#xff0c;他们主要功能&#xff0c;使用方法&#xff0c;使用场景 BitmapSource 是 WPF 中图像处理的基类&#xff0c;提供了许多派生类来处理不同类型的图像源。以下是一些常见的 BitmapSource 派生类、它们的主要功…

算法-字符串-43.字符串相乘

一、题目 二、思路解析 1.思路&#xff1a; 1.双重for循环&#xff0c;倒序依次相乘 2.在倒序处理进位问题 3.最后返回参数的类型是string&#xff0c;用StringBuilder拼接&#xff0c;再转换为字符串 2.常用方法&#xff1a; 1.equals,比较对象内容是否一致 "0".eq…

Next.js优化教程:优化元数据

更多有关Next.js教程&#xff0c;请查阅&#xff1a; 【目录】Next.js 独立开发系列教程-CSDN博客 目录 前言 1. 元数据的重要性 1.1 什么是元数据&#xff1f; 1.2 元数据优化的核心目标 2. Next.js 的元数据管理工具 2.1 使用 metadata 属性 2.2 动态元数据 3. 高级…

【机器学习】机器学习的基本分类-监督学习-Lasso 回归(Least Absolute Shrinkage and Selection Operator)

Lasso 回归是一种线性回归方法&#xff0c;通过引入 ​ 正则化&#xff08;绝对值惩罚项&#xff09;约束回归系数&#xff0c;既能解决多重共线性问题&#xff0c;又具有特征选择能力。 1. Lasso 回归的目标函数 Lasso 的目标是最小化以下损失函数&#xff1a; 其中&#xff…

CH592用PB10做GPIO输入中断问题记录

PB10和PB22正常用作烧录&#xff0c;但是可以正常做GPIO口使用的&#xff0c;同时支持输入中断。因实际layout问题最终使用PB10做GPIO输入中断功能。 主要功能&#xff1a;PB10检测充电芯片状态&#xff0c;并根据充电芯片状态切换芯片自身的工作模式&#xff0c;进行不同的任务…

20.LMAX-DDD的极致性能架构

学习视频来源&#xff1a;DDD独家秘籍视频合集 https://space.bilibili.com/24690212/channel/collectiondetail?sid1940048&ctype0 文章目录 历史起源架构目标架构要素 时序对比传统时序事件溯源时序LMAX时序 单线程非阻塞异步IO&#xff08;reactor&#xff09;多线程单…

图海寻径——图相关算法的奇幻探索之旅

一、图的表示 1. 邻接矩阵 (Adjacency Matrix) #include <iostream> #include <vector> #include <queue> #include <limits>using namespace std;class GraphMatrix { private:int numVertices;vector<vector<int>> adjMatrix;const st…

Docker单机网络:解锁本地开发环境的无限潜能

作者简介&#xff1a;我是团团儿&#xff0c;是一名专注于云计算领域的专业创作者&#xff0c;感谢大家的关注 座右铭&#xff1a; 云端筑梦&#xff0c;数据为翼&#xff0c;探索无限可能&#xff0c;引领云计算新纪元 个人主页&#xff1a;团儿.-CSDN博客 目录 前言&#…

【前端】深入解析 JavaScript 中的 instanceof 运算符与 number 数据类型 和 Number 对象 区别辨析

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: 前端 文章目录 &#x1f4af;前言&#x1f4af;理论基础&#xff1a;instanceof 运算符的设计初衷与核心功能基础定义与应用示例解析代码分解 &#x1f4af;typeof 与 instanceof&#xff1a;两种类型检测方法的语义与…

UI自动化测试框架:PO模式+数据驱动

&#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 1. PO 设计模式简介 什么是 PO 模式&#xff1f; PO&#xff08;PageObject&#xff09;设计模式将某个页面的所有元素对象定位和对元素对象的操作封装成一个 Pa…

在ensp中ACL路由控制实验

一、实验目的 掌握ACL路由控制管理 二、实验要求 要求&#xff1a; 配置路由策略&#xff0c;左右两边不公开区域对方不可达&#xff0c;其他区域可以互相ping通 设备&#xff1a; 1、三台路由器 2、四台交换机 3、四台电脑 4、四台服务器 使用ensp搭建实验环境,如图所…