模式识别作业:颜色算子的三种阈值分割算法

一、引言:

在图像处理中,我们往往需要提取图像的一些关键信息,比如本篇文章的内容——提取颜色,然而当我们需要提取某一种颜色时,无论图像余下的部分如何“丰富多彩”,他们都不再重要,需要被忽略,我们称其为“背景”。此时我们只需要黑白图像就可以清晰的展示出需要提取的颜色。我们往往将每个像素点的灰度值转换为0或1,表示黑色或白色,从而将图像转换为黑白二色,这样的图像被称为二值化图像

借助 OpenCV 的 inRange 函数我们就可以根据阈值提取满足条件的像素。

二、RGB 颜色阈值算子

1 RGB空间:

还记得第一篇文章提到的张量么,一张彩色图片可以看作一个三阶张量,即一张彩色图像是由红,绿,蓝三张图片叠加成的,每张图片的有无数的像素点,每个像素点的值域为0~255来表示颜色深浅。这就是最常用的三通道颜色空间,RGB空间。

2 代码实现:

import cv2
import numpy as npdef color_threshold(image, lower_threshold, upper_threshold):"""RGB颜色阈值算子参数:- image: 输入的RGB图像- lower_threshold: 低阈值,为一个包含三个元素的列表或元组,分别对应BGR通道的最小值- upper_threshold: 高阈值,为一个包含三个元素的列表或元组,分别对应BGR通道的最大值返回值:- thresholded_image: 经过阈值处理后的二值图像"""# 使用OpenCV的inRange函数根据阈值提取满足条件的像素thresholded_image = cv2.inRange(image, np.array(lower_threshold), np.array(upper_threshold))return thresholded_image# 主函数
if __name__ == "__main__":# 读取输入图像input_image = cv2.imread("leaf.jpg")# 定义颜色阈值lower_threshold = [0, 100, 0]  # 低阈值,例如,过滤掉B通道小于0,G通道小于100,R通道小于0的像素upper_threshold = [50, 255, 50]  # 高阈值,例如,过滤掉B通道大于50,G通道大于255,R通道大于50的像素# 应用颜色阈值算子thresholded_image = color_threshold(input_image, lower_threshold, upper_threshold)# 显示原始图像和处理后的二值图像cv2.imshow("Original Image", input_image)  # imshow用于新建弹窗显示图像cv2.imshow("Thresholded Image", thresholded_image)cv2.waitKey(0)  # 保留弹窗直至检测到其他键盘操作cv2.destroyAllWindows()

3 运行结果:

三、HSV 颜色阈值算子

1 HSV空间:

HSV空间指的是色彩空间中的一种,由色相(Hue)、饱和度(Saturation)和明度(Value)三个要素组成。色相表示颜色的基本属性,饱和度表示颜色的纯度或深浅程度,而明度则表示颜色的亮度。

2 代码实现:

import cv2
import numpy as npdef hsv_threshold(image, lower_hsv, upper_hsv):"""使用HSV颜色空间进行颜色阈值分割参数:image: 输入的RGB图像lower_hsv: HSV颜色空间下的下限阈值,格式为(H_MIN, S_MIN, V_MIN)upper_hsv: HSV颜色空间下的上限阈值,格式为(H_MAX, S_MAX, V_MAX)返回:thresholded_image: 分割后的二值图像"""# 将RGB图像转换为HSV颜色空间hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)# 设置阈值范围lower = np.array(lower_hsv)upper = np.array(upper_hsv)# 根据阈值进行二值化处理thresholded_image = cv2.inRange(hsv_image, lower, upper)return thresholded_image# 主函数
if __name__ == "__main__":# 读取图像image = cv2.imread("apple.jpg")# 定义想要提取的HSV颜色范围lower_colour = (40, 100, 100)upper_colour = (80, 255, 255)# 使用阈值算子分割图像colour_threshold = hsv_threshold(image, lower_colour, upper_colour)# 显示原始图像和分割后的图像cv2.imshow("Original Image", image)  # imshow用于新建弹窗显示图像cv2.imshow("colour Threshold", colour_threshold)cv2.waitKey(0)  # 保留弹窗直至检测到其他键盘操作cv2.destroyAllWindows()

3 运行结果:

四、CIE Lab 颜色阈值算子

1 lab空间:

LAB空间是一种色彩空间,也称为CIE LAB色彩空间。它包含三个坐标轴:L表示亮度(Lightness),a表示从洋红色(红色的负轴)到绿色(绿色的正轴)的范围,b表示从蓝色(蓝色的负轴)到黄色(黄色的正轴)的范围。

2 代码实现:

import numpy as np
import cv2def lab_color_threshold(image, lower_bound, upper_bound):"""使用CIE Lab颜色空间进行阈值分割参数:image: 输入的RGB图像lower_bound: 一个包含3个元素的列表,表示颜色的下界(L, a, b)upper_bound: 一个包含3个元素的列表,表示颜色的上界(L, a, b)返回:thresholded: 二值图像,仅包含在指定颜色范围内的区域"""# 将RGB图像转换为CIE Lab颜色空间lab_image = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)# 提取L、a、b通道L, a, b = cv2.split(lab_image)# 创建空的二值图像thresholded = np.zeros_like(L)# 将颜色通道与阈值进行比较,生成二值图像within_bounds = (lower_bound[0] <= L) & (L <= upper_bound[0]) & \(lower_bound[1] <= a) & (a <= upper_bound[1]) & \(lower_bound[2] <= b) & (b <= upper_bound[2])# 将满足条件的像素设置为255(白色)thresholded[within_bounds] = 255return thresholded# 主函数
if __name__ == "__main__":# 读取图像image = cv2.imread("apple.jpg")# 设置阈值范围(这里使用的是示例值,你可以根据需要调整)lower_bound = [0, 128, 128]  # L, a, b 的下界upper_bound = [255, 255, 255]  # L, a, b 的上界# 应用颜色阈值算子thresholded_image = lab_color_threshold(image, lower_bound, upper_bound)# 显示结果cv2.imshow("Original Image", image)  # imshow用于新建弹窗显示图像cv2.imshow("Thresholded Image", thresholded_image)cv2.waitKey(0)  # 保留弹窗直至检测到其他键盘操作cv2.destroyAllWindows()

3 运行结果:

五、优缺点对比

1 RGB优缺点:

(1)优点:

  1. 直接对应于显示器和相机的工作原理,易于理解和实现。
  2. 在处理彩色图像时,RGB是一种直观的颜色表示方式。

(2)缺点:

  1. RGB模型对光照和阴影等因素较为敏感,不太适合于需要考虑光照条件的任务。
  2. RGB模型下的颜色值不够直观,不易于对颜色的特性进行准确描述。
  3. 某些情况下,RGB模型下的颜色空间变换不够灵活,无法有效地处理一些特定的颜色操作。

2 HSV优缺点:

(1)优点:

  1. HSV模型更符合人类对颜色的感知,色相、饱和度和明度的概念更直观。
  2. 色相分量可以独立于光照条件而保持不变,因此HSV对光照条件的影响较小。
  3. 在某些任务中,如颜色识别和区分不同颜色的对象,HSV模型可能更有效。

(2)缺点:

  1. HSV模型的计算量较大,不够简洁高效,对计算资源要求较高。
  2. HSV模型不是设备无关的,可能会受到设备性能和环境光照的影响。
  3. 在一些情况下,HSV模型下的颜色分布不均匀,可能导致某些区域难以区分或处理。

3 LAB优缺点:

(1)优点:

  1. LAB模型是一种设备无关的颜色空间模型,颜色值在不同设备和环境下保持一致。
  2. LAB模型更符合人类视觉系统的感知特性,对颜色的描述更准确。
  3. LAB模型可以很好地处理颜色校正和颜色匹配等任务。

(2)缺点:

  1. LAB模型的数学计算较复杂,相比RGB和HSV模型,计算量较大。
  2. 有时,LAB模型下的颜色表示不够直观,不够直观地反映颜色在图像中的分布情况。
  3. 由于LAB模型对颜色的描述较为细致,可能会导致在某些情况下对颜色的处理和分析更加复杂。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/6274.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何使用SSH密钥克隆仓库

1.创建SSH Key 在用户目录下查看有没有.ssh目录。如果有且该.ssh目录下有id_rsa&#xff08;私钥&#xff09;&#xff0c;和id_rse_pub(公钥)这俩文件&#xff0c;那么这一步就可以跳过。否则使用以下指令创建SSH Key ssh-keygen -t rsa -C "xxxqq.com" "xx…

8.k8s中网络资源service

目录 一、service资源概述 二、service资源类型 1.ClusterIP类型 2.service的nodeport类型 3.service的loadbalancer类型&#xff08;了解即可&#xff09; 4.service的externalname类型&#xff08;了解即可&#xff09; 三、nodeport的端口范围设置和svc的endpoint列表 1.修…

AJAX概述和基本使用

01 【AJAX概述和基本使用】 1.AJAX简介 AJAX 全称为Asynchronous JavaScript And XML&#xff0c;就是异步的JS 和XML 通过AJAX 可以在浏览器中向服务器发送异步请求&#xff0c;最大的优势&#xff1a;无刷新获取数据 AJAX 不是新的编程语言&#xff0c;而是一种将现有的标准…

刷代码随想录有感(53):合并二叉树

题干&#xff1a; 代码&#xff08;递归实现&#xff09;&#xff1a; TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {//前序好理解&#xff0c;直接将树覆盖到另一个上面if(root1 NULL)return root2;//当前遍历节点为空的话就让另一个的值覆盖过来if(root2 NUL…

对命令模式的理解

目录 一、场景1、文本编辑器并不是一个好的例子&#xff0c;设备控制器才是2、设备控制器的demo 二、不用命令模式1、代码2、问题 三、使用命令模式1、代码2、当需求变化时2.1 新增代码2.2 优点 四、进一步思考1、省略对Command的建模可以吗&#xff1f;2、命令模式的价值 一、…

GDPU unity游戏开发 碰撞器与触发器

砰砰叫&#xff0c;谁动了她的奶酪让你的小鹿乱撞了。基于此&#xff0c;亦即碰撞与触发的过程。 碰撞器与触发器的区别 通俗点讲&#xff0c;碰撞器检测碰撞&#xff0c;触发器检测触发&#xff0c;讲了跟没讲似的。碰撞器是用来检测碰撞事件的&#xff0c;在unity中&#xff…

gateway中对返回的数据进行处理

gateway中对返回的数据进行处理 背景1.项目层次 背景 最近公司有个需求是对返回数据进行处理&#xff0c;比如进行数据脱敏。最后在gateway中进行处理。 1.项目层次 根据项目的结构&#xff0c;原本在菜单功能处有对于权限设计的url判断&#xff0c;所以在url后面加了一个正…

CGAL 网格测地线距离计算

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 网格测地线距离是指在三维网格模型中计算两点之间的最短路径距离,考虑了网格的拓扑结构和几何形状。与传统的欧几里德距离不同,测地线距离考虑了网格的曲面形状,因此更适用于描述三维空间中的距离。 二、实现代码…

docker常用容器启动命令

docker常用容器启动命令 mysql启动redis启动nginx配置文件&启动 mysql启动 docker run -itd --name mysql-test --restartalways -p 3306:3306 -e MYSQL_ROOT_PASSWORD123456 mysqlredis启动 docker run -itd --name redis-test --restartalways -p 6379:6379 redisnginx…

蓝桥杯练习系统(算法训练)ALGO-949 勇士和地雷阵

资源限制 内存限制&#xff1a;256.0MB C/C时间限制&#xff1a;1.0s Java时间限制&#xff1a;3.0s Python时间限制&#xff1a;5.0s 问题描述 勇士们不小心进入了敌人的地雷阵&#xff08;用n行n列的矩阵表示&#xff0c;*表示某个位置埋有地雷&#xff0c;-表示某个…

yolov5-pytorch-Ultralytics训练+预测+报错处理记录

一、前言 玩一段时间大模型&#xff0c;也该回归一下图像识别。本项目用于记录使用基于Ultralytics的yolov5进行目标检测测试。为什么用Ultralytics呢&#xff1f;答案有3 1、其良好的生态&#xff0c;方便我们部署到其它语言和设备上。因此本次测试结论&#xff1a;大坑没有&…

技术周总结 2024.04.29-05.05

一、python的数据表处理 """ 删除 Doris库中某些表中无效的数据 """ import mysql.connector import socket import socks import pandas as pd import pymysql from sqlalchemy import create_engine, text import csv from datetime import da…

UE5 蓝图入门

基础节点创建&#xff1a; 常量&#xff1a; 按住 1 &#xff0c;点击鼠标左键&#xff0c;创建常量 二维向量&#xff1a; 按住 2 &#xff0c;点击鼠标左键&#xff0c;创建二维向量 三维向量&#xff1a; 按住 3 &#xff0c;点击鼠标左键 乘法&#xff1a; 按住 m 键…

基于node.js+css+html+mysql博客系统

博主介绍&#xff1a; 大家好&#xff0c;本人精通Java、Python、Php、C#、C、C编程语言&#xff0c;同时也熟练掌握微信小程序、Android等技术&#xff0c;能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验&#xff0c;能够为学生提供各类…

【C++风云录】图形和动作捕捉库全面解析:从OpenPose到OpenCV

深入浅出&#xff1a;六大计算机视觉和动作捕捉库的教程和比较 前言 本文将为读者详细介绍六种在计算机视觉领域广泛使用的开源软件和SDK&#xff0c;包括OpenPose、Vicon SDK、Intel RealSense SDK、Microsoft Kinect SDK、PCL (Point Cloud Library)和OpenCV。我们会一一解…

Vue进阶之Vue项目实战(一)

Vue项目实战 项目搭建初始化eslint版本约束版本约束eslint配置 stylelintcspellcz-githusky给拦截举个例子 zx 项目搭建 node版本&#xff1a;20.11.1 pnpm版本&#xff1a;9.0.4 初始化 vue3最新的脚手架 pnpm create vite byelide-demo --template vue-ts pnpm i pnpm dev…

MIPS32 指令架构

指令格式 R 类型 说明&#xff1a; 用于寄存器和寄存器操作 参数说明: Op: 指令操作码Rs: 第一个源操作数寄存器号&#xff0c;参与运算使用Rd: 目的操作数寄存器号&#xff0c;保存结果使用Shamt: 位偏移量&#xff0c;仅在位移指令使用&#xff0c;在此直接置0Func: 指令函…

区块链 | IPFS:IPNS(入门版)

&#x1f98a;原文&#xff1a;IPFS 与 IPNS 啥关系&#xff1f; &#x1f98a;写在前面&#xff1a;本文属于搬运博客&#xff0c;自己留存学习。这篇文章讲得太入门了&#xff0c;不涉及任何底层原理。 正文 随着 2019 年 12 月 12 日 Filecoin 测试网的上线&#xff0c;IPF…

深入 Django 模型层:数据库设计与 ORM 实践指南

title: 深入 Django 模型层&#xff1a;数据库设计与 ORM 实践指南 date: 2024/5/3 18:25:33 updated: 2024/5/3 18:25:33 categories: 后端开发 tags: Django ORM模型设计数据库关系性能优化数据安全查询操作模型继承 第一章&#xff1a;引言 Django是一个基于Python的开源…

安卓手机APP开发__媒体开发部分__分享声音的输入

安卓手机APP开发__媒体开发部分__分享声音的输入 目录 概述 安卓10之前的版本的行为 安卓10的行为 共享场景 小助手普通的APP 有可读取权的服务 普通的APP 两个普通的APP 语音电话 普通的APP 概述 声音的输入通常来自于内嵌的麦克风,还有外置的麦克网,或者是一个…