TCP快速重传机制为啥出现重复ACK?

TCP快速重传机制为啥出现重复ACK

简单来说,丢失数据包后发送方至少发了三个请求,每个请求返回接收方下一次期待的序列号ACK,也就是丢失数据包之前的一个正常请求的确认ACK值

在 TCP(Transmission Control Protocol,传输控制协议)的快速重传机制中,当接收方收到三次相同的 ACK(Acknowledgment,确认)值时就会触发快速重传,之所以会出现这种情况以及它的原理如下:

一、正常的 TCP 确认机制回顾

在 TCP 通信中,发送方发送数据报文段后,接收方会对收到的报文段进行确认,发送 ACK 报文告知发送方已成功接收对应的数据。正常情况下,接收方按照顺序接收报文段,每收到一个报文段就回复一个对应的 ACK,发送方根据 ACK 来判断数据是否被正确接收,进而决定是否继续发送后续报文段等操作。

二、出现三次相同 ACK 的原因

过程:

  • 数据丢失情况:假设发送方按顺序发送了报文段 1、报文段 2、报文段 3 等,其中报文段 2 在传输过程中丢失了(可能由于网络拥塞、链路故障等原因),接收方成功收到了报文段 1,但是一直没收到报文段 2,所以就没办法对报文段 3 及后续按顺序到达的报文段进行正常确认(因为 TCP 是面向字节流的可靠协议,要求按顺序接收数据)。

  • 重复 ACK 的产生:当接收方收到报文段 3 时,由于它期望收到的是报文段 2,此时接收方并不会对报文段 3 进行正常的按序确认(也就是不会确认报文段 3 对应的序列号等内容),而是会再次发送一个对报文段 1 最后一个字节的确认 ACK(这个 ACK 对应的序列号其实就是报文段 1 最后一个字节的序列号),意思是告诉发送方 “我还在等报文段 2 呢,前面的报文段 1 我已经收到了”。之后,如果发送方继续发送了报文段 4、报文段 5 等,只要报文段 2 没到,接收方每次收到新的报文段后,都会重复发送这个针对报文段 1 的 ACK,就这样,当发送方连续收到三个相同的 ACK(都是针对报文段 1 最后一个字节的确认 ACK)时,就可以推断出报文段 2 大概率是丢失了。

三、快速重传及后续处理

  • 快速重传触发:发送方一旦收到三次相同的 ACK,就不会傻傻地等到超时定时器到期(TCP 原本还有超时重传机制,如果等待足够长时间没收到 ACK 就重传数据,但超时时间相对较长),而是立即启动快速重传,重传那个被认为丢失的报文段(也就是上述例子中的报文段 2)。

  • 资源利用合理性分析:虽然表面上看好像重传了可能接收方已经收到的数据(比如接收方后续可能已经收到了报文段 2,只是发送方还没等到相应的 ACK 就触发了快速重传),但实际上这种机制是非常有必要且高效的。因为相比一直等到超时定时器到期再重传(超时时间往往较长,会造成传输效率低下、延迟增加等问题),快速重传能够更快地对可能丢失的数据进行补发,尽早恢复正常的传输秩序,从整体的传输效率和减少延迟角度来看,它所带来的收益远远大于偶尔重传可能已经收到的数据这种小 “浪费”,而且网络环境中数据真正丢失的情况还是比较常见的,快速重传机制多数时候是在做有效的补救工作。

所以,三次相同 ACK 的出现是因为接收方在期望的报文段未按序到达时,通过重复发送之前已正确接收报文段对应的 ACK 来提醒发送方有数据丢失,发送方据此来触发快速重传机制,以保障 TCP 传输的可靠性和高效性。

  • ACK也表示接收端下一次期望收到的序列号,就能解释为啥发送了后面的数据包,也可能返回前面丢失的确认应答。也能解释滑动窗口,不关心部分ACK信息丢失,只要确保最后一个ACK值,就能确定窗口中前部分请求接收到了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/61903.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Mybatis】@Param注解 resultMap手动映射

文章目录 一、映射文件参数二、查询映射2-1 一对一2-2 一对多2-3 总结 一、映射文件参数 Param 注解官方文档解释 1、单个参数&#xff08;对象&#xff09;不使用注解 public int save(User user);<!-- 添加用户 --> <insert id"save" parameterType&quo…

正则表达式灾难:重新认识“KISS原则”的意义

RSS Feed 文章标题整理 微积分在生活中的应用与思维启发 捕鹿到瞬时速度的趣味探索 微积分是一扇通往更广阔世界的门&#xff0c;从生活中学习思维的工具。 数据库才是最强架构 你还在被“复杂架构”误导吗&#xff1f; 把业务逻辑写入数据库&#xff0c;重新定义简单与效率。…

C#基础上机练习题

21.计算500-800区间内素数的个数cn&#xff0c;并按所求素数的值从大到小的顺序排列&#xff0c;再计算其间隔加、减之和&#xff0c;即第1个素数-第2个素数第3个素数-第4个素数第5个素数……的值sum。请编写函数实现程序的要求&#xff0c;把结果cn和sum输出。 22.在三位整数…

【STM32】在 STM32 USB 设备库添加新的设备类

说实话&#xff0c;我非常想吐槽 STM32 的 USB device library&#xff0c;总感觉很混乱。 USB Device library architecture 根据架构图&#xff1a; Adding a custom class 如果你想添加新的设备类&#xff0c;必须修改的文件有 usbd_desc.cusbd_conf.cusb_device.c 需要…

多头数(head number);d_model、d_k;词嵌入维度之间的关系;多头是对不同维度的特征分开提取,意义在于将并行执行

目录 多头是对不同维度的特征分开提取,意义在于将并行执行 之后的每头提取的特征仅仅进行矩阵拼接 多头数(head number) d_model、d_k 词嵌入维度之间的关系 词嵌入的维度(d_model)决定了权重矩阵的形状 一、概念解释 二、关系举例说明 多头数,权重矩阵的长度和词…

Mac配置maven环境及在IDEA中配置Maven

Mac配置maven环境及在IDEA中配置Maven 1. 介绍 Maven是一款广泛用于Java等JVM语言项目的工具&#xff0c;它以项目对象模型&#xff08;POM&#xff09;为基础进行项目管理&#xff0c;通过POM文件来定义项目信息和依赖关系。同时&#xff0c;它也是构建自动化工具&#xff0…

Qt中2D绘制系统

目录 一、Qt绘制系统 1.1Qt绘制基本概念 1.2 绘制代码举例 1.3画家 1.3.1 QPainter的工作原理&#xff1a; 1.3.2 自定义绘制饼状图&#xff1a; 1.4画笔和画刷 1.4.1画笔 1.4.2 画刷填充样式 1.5 反走样和渐变 1.6绘制设备 1.7坐标变换 1.8QPainterPath 1.9绘制文…

运维Tips:Docker或K8s集群拉取Harbor私有容器镜像仓库配置指南

[ 知识是人生的灯塔,只有不断学习,才能照亮前行的道路 ] Docker与Kubernetes集群拉取Harbor私有容器镜像仓库配置 描述:在现在微服务、云原生的环境下,通常我们会在企业中部署Docker和Kubernetes集群,并且会在企业内部搭建Harbor私有镜像仓库以保证开发源码安全,以及加快…

2022年计算机网络408考研真题解析

第一题&#xff1a; 解析&#xff1a;网络体系结构-数据链路层 在ISO网络参考模型中&#xff0c;运输层&#xff0c;网络层和数据链路层都实现了流量的控制功能&#xff0c;其中运输层实现的是端到端的流量控制&#xff0c;网络层实现的是整个网络的流量控制&#xff0c;数据链…

鸿蒙NEXT开发案例:文字转拼音

【引言】 在鸿蒙NEXT开发中&#xff0c;文字转拼音是一个常见的需求&#xff0c;本文将介绍如何利用鸿蒙系统和pinyin-pro库实现文字转拼音的功能。 【环境准备】 • 操作系统&#xff1a;Windows 10 • 开发工具&#xff1a;DevEco Studio NEXT Beta1 Build Version: 5.0.…

使用sk-learn 理解TF-IDF

TF-IDF&#xff08;Term Frequency-Inverse Document Frequency&#xff09;是一种常用的文本挖掘技术&#xff0c;用于评估一个词语在一组文档中的重要性。它广泛应用于信息检索和文本挖掘中&#xff0c;尤其是在搜索引擎和推荐系统中。 组成部分 TF-IDF 由两个部分组成&…

【漏洞复现】|百易云资产管理运营系统/mobilefront/c/2.php前台文件上传

漏洞描述 湖南众合百易信息技术有限公司&#xff08;简称&#xff1a;百易云&#xff09;成立于2017年是一家专注于不动产领域数字化研发及服务的国家高新技术企业&#xff0c;公司拥有不动产领域的数字化全面解决方案、覆盖住宅、写字楼、商业中心、专业市场、产业园区、公建、…

网络层协议IP

对于网络层我们直接通过IP协议来了解其内容 一.IP协议 首先我们先来了解几个概念&#xff1a; 主机&#xff1a;配有IP地址&#xff0c;但是不进行路由控制的设备 路由器&#xff1a;配有IP地址&#xff0c;同时进行路由控制的设备 节点&#xff1a;主机和路由器的统称 所以现在…

道品智能科技移动式水肥一体机:农业灌溉施肥的革新之选

在现代农业的发展进程中&#xff0c;科技的力量正日益凸显。其中&#xff0c;移动式水肥一体机以其独特的可移动性、智能化以及实现水肥一体化的卓越性能&#xff0c;成为了农业领域的一颗璀璨新星。它不仅改变了传统的农业灌溉施肥方式&#xff0c;更为农业生产带来了高效、精…

数据结构 (10)队列

前言 队列是一种特殊的数据结构&#xff0c;它遵循先进先出&#xff08;FIFO&#xff0c;First In First Out&#xff09;的原则。 一、定义与基本概念 定义&#xff1a;队列是一种只允许在一端&#xff08;队尾&#xff09;进行插入操作&#xff0c;而在另一端&#xff08;队头…

【数据分享】2001-2023年我国30米分辨率冬小麦种植分布栅格数据(免费获取)

小麦、玉米、水稻等各类农作物的种植分布数据在农业、环境、国土等很多专业都经常用到&#xff01; 本次给大家分享的是我国2001-2023年逐年的30米分辨率冬小麦种植分布栅格数据&#xff01;数据格式为TIFF格式&#xff0c;数据坐标为GCS_WGS_1984。该数据包括我国11个省份的冬…

17.5k Star,ThingsBoard 一款开源、免费、功能全面的物联网 IoT 平台 -慧知开源充电桩平台

项目介绍 ThingsBoard是一个开源、免费、功能全面、灵活易用的物联网&#xff08;IoT&#xff09;平台&#xff0c;专注于数据收集、处理、可视化以及设备管理。它提供了一个全面的解决方案&#xff0c;用于构建和管理物联网应用。支持从各种设备收集数据&#xff0c;通过内置…

力扣面试150 填充每个节点的下一个右侧节点指针 II BFS 逐层构建法

Problem: 117. 填充每个节点的下一个右侧节点指针 II &#x1f37b; BFS 空间优化 &#x1f469;‍&#x1f3eb; 参考题解 ⏰ 时间复杂度: O ( n ) O(n) O(n)&#x1f30e; 空间复杂度: O ( 1 ) O(1) O(1) class Solution {public Node connect(Node root) {if (root …

ElasticSearch学习篇18_《检索技术核心20讲》LevelDB设计思想

目录 一些常见的设计思想以及基于LSM树的LevelDB是如何利用这些设计思想优化存储、检索效率的。 几种常见的设计思想 索引和数据分离减少磁盘IO读写分离分层思想 LevelDB的设计思想 读写分离设计分层设计与延迟合并LRU缓存加速检索 几种常见设计思想 索引与数据分离 索引…

LabVIEW Real-Time 的特点

LabVIEW Real-Time&#xff08;简称 LabVIEW RT&#xff09;是为实时系统设计的软件平台&#xff0c;结合 NI 硬件&#xff08;如 CompactRIO 和 PXI 系列&#xff09;&#xff0c;能够在高可靠性、高性能要求的场景中实现稳定的实时控制与数据处理。以下是它的主要用处和特点&…