深度学习实战人脸识别

在这里插入图片描述

文章目录

  • 前言
  • 一、人脸识别一般过程
  • 二、人脸检测主流算法
    • 1. MTCNN
    • 2. RetinaFace
    • 3. CenterFace
    • 4. BlazeFace
    • 5. YOLO
    • 6. SSD
    • 7. CascadeCNN
  • 三、人脸识别主流算法
    • 1.deepface
    • 2.FaceNet
    • 3.ArcFace
    • 4.VGGFace
    • 5.DeepID
  • 四、人脸识别系统实现
    • 0.安装教程与资源说明
    • 1. 界面采用PyQt5框架
    • 2.人脸定位
    • 3. 人脸注册
    • 4.人脸删除
    • 5.单人脸匹配识别
    • 6.多人脸匹配识别
    • 7.未注册人脸匹配识别
    • 8.代码实现
  • 五、总结
  • 结束语


深度学习实战人脸检测与识别

前言

人脸识别技术的研究意义是多方面的,它涉及到社会生活的各个领域,并为社会发展和人民生活带来便利和安全。以下是人脸识别研究的几个主要意义:

  1. 安全领域:人脸识别技术可以应用于门禁系统、监控系统等,实现人员身份的快速识别和记录,提高安全性。

  2. 社会管理:在公安、边检、人口普查等社会管理领域,人脸识别技术可以进行人员身份的准确核验,确保社会管理工作的效率和准确性。

  3. 商业领域:在金融、零售、旅游等行业,人脸识别技术可以实现快速的身份识别和安全支付,提高用户体验。

  4. 医疗领域:在医院门诊、护理等医疗领域,人脸识别技术可以快速识别患者身份,提高医疗服务的质量和效率。

  5. 技术创新:人脸识别技术的发展推动了计算机视觉和人工智能领域的技术进步,尤其是在深度学习的应用上,人脸识别技术取得了显著的成就。

  6. 跨领域应用:人脸识别技术与其他技术领域如物联网、移动计算等的融合,创造出新的应用场景和业务模式。

综上所述,人脸识别技术的研究意义不仅在于技术层面的创新,也包括对社会、法律和伦理方面问题的深入思考,以实现技术的健康发展和应用。


一、人脸识别一般过程

人脸识别的一般过程可以分为以下几个步骤:

  1. 人脸检测

    • 图像采集:首先需要获取图像数据,这可以是静态图像或视频流。
    • 人脸定位:在图像中定位人脸的位置,这通常通过人脸检测算法实现,如Haar特征、HOG+SVM、MTCNN等。
  2. 预处理

    • 图像预处理:包括灰度化、直方图均衡化、噪声去除等,以提高后续处理的准确性。
    • 人脸对齐:将检测到的人脸调整到标准位置和大小,通常涉及到旋转、缩放和裁剪等操作。
  3. 特征提取

    • 特征表示:从预处理后的人脸图像中提取特征,这些特征可以是几何特征、纹理特征或基于深度学习的特征。
    • 特征选择:选择最有代表性的特征用于识别,以减少计算量并提高识别率。
  4. 特征匹配

    • 特征编码:将提取的特征转换为一种可以比较的形式,如特征向量。
    • 相似度计算:计算待识别人脸的特征向量与数据库中已知人脸的特征向量的相似度。
  5. 分类决策

    • 分类器训练:使用已知的人脸数据训练分类器,如支持向量机(SVM)、神经网络、决策树等。
    • 分类预测:将待识别人脸的特征向量输入分类器,得到识别结果。
  6. 结果输出

    • 输出识别结果:将识别结果输出给用户,可以是人脸的身份信息、相似度分数等。
    • 反馈学习:根据识别结果的准确性,对模型进行调整和优化。
  7. 活体检测

    • 防止欺骗:为了提高安全性,人脸识别系统通常会加入活体检测步骤,以区分真实人脸和照片、视频等伪造人脸。

二、人脸检测主流算法

1. MTCNN

MTCNN (Multi-task Cascaded Convolutional Networks)是由中国科学院提出的一种多任务级联卷积神经网络,它可以同时进行人脸检测、关键点定位和姿态估计等任务,具有精度高、速度快、能够处理多个尺度的人脸等优点。


具体说明与代码实现可参考博主写的教程MTCNN人脸检测算法实现(python)

2. RetinaFace

RetinaFace 是由中国香港城市大学提出的一种准确率更高的人脸检测与关键点定位算法,其使用了可变形卷积网络(Deformable Convolutional Network)来实现更加准确的定位,RetinaFace 特别适用于小尺度人脸的定位。

3. CenterFace

CenterFace 是由华为提出的一种轻量级人脸检测与关键点定位算法,该算法只需要 1.5MB 的模型大小,可以在移动端实时运行,CenterFace 采用了 Hourglass 模型和特征金字塔网络(Feature Pyramid Network)来实现高精度的人脸定位。

4. BlazeFace

BlazeFace 是由 Google 提出的一种极其轻量级的人脸检测算法,它的模型大小只有 2MB 左右,可以在移动端实时运行,BlazeFace 采用了创新的 anchor-free 检测方式,可以实现更快速度的人脸定位。

5. YOLO

YOLO 是一种端到端的实时目标检测算法,可以同时对多个目标进行检测和定位。由于 YOLO 可以将整张图像划分为网格,并在每个网格上预测目标的类别和边界框,因此它通常比其他基于区域的目标检测算法更快。

6. SSD

SSD 是一种基于卷积神经网络的单步目标检测算法,可以在一次前向传播中完成对多个目标的检测,相对于 Faster R-CNN 等基于区域的检测算法,SSD 更加简单与高效。

7. CascadeCNN

CascadeCNN 是由微软亚洲研究院提出的级联卷积神经网络,能够在不牺牲性能的情况下大幅减小网络规模和计算量。CascadeCNN 的结构是由多个级联阶段组成,每个阶段包含多个级联卷积层和池化层,可以有效地提高人脸定位的精确度和稳定性。

三、人脸识别主流算法

深度学习在人脸识别领域的主流算法主要包括以下几种:

1.deepface

DeepFace:由Facebook开发,使用深度神经网络来识别人脸,达到了接近人类水平的识别准确率。

2.FaceNet

FaceNet:由Google开发,使用三元组损失函数(triplet loss)将人脸映射到欧几里得空间中,使得相似的人脸在空间中的距离更近。

3.ArcFace

ArcFace:在之前模型的基础上引入了角度边际损失(angular margin loss),使得学习到的特征更具区分性。

4.VGGFace

VGGFace:这是一个深度网络,使用大型数据集进行训练,以提供高精度的人脸识别任务。

5.DeepID

DeepID系列:一系列深度学习模型,用于人脸识别任务,以逐步提高识别性能而闻名。

这些算法在设计、训练/测试数据集、应用场景以及评估协议等方面都取得了显著的进展,并且它们在处理RGB-D、视频和异构人脸数据方面也表现出色。这些主流算法的发展,极大地推动了人脸识别技术的进步,并在多个方面重塑了人脸识别的研究格局。

四、人脸识别系统实现

0.安装教程与资源说明

离线安装配置文件说明
在这里插入图片描述
在这里插入图片描述

1. 界面采用PyQt5框架

在这里插入图片描述

2.人脸定位

在这里插入图片描述

3. 人脸注册

在这里插入图片描述

4.人脸删除

在这里插入图片描述

5.单人脸匹配识别

在这里插入图片描述

6.多人脸匹配识别

在这里插入图片描述

7.未注册人脸匹配识别

在这里插入图片描述

8.代码实现

class QThreadFaceModel(QThread):cnn_predict_finish_sig = pyqtSignal(object)face_recog_record_insert_sig = pyqtSignal(list)face_recog_warning_sig = pyqtSignal(str)def __init__(self):super(QThreadFaceModel, self).__init__()self.run_flag = Falseself.mode = 0self.last_pid_list = []self.cap = cv2.VideoCapture(0)def __del__(self):print('__del__')self.cap.release()def set_run_flag(self, flag):self.run_flag = flagdef set_face_model(self, model):self.face_model = modeldef set_model(self, mode):self.mode = modedef set_face_features(self, face_features):self.face_features = face_featuresdef set_face_names(self, face_name_dict):self.face_name_dict = face_name_dictdef query_face_id(self, query_feature, sim_thresh=0.65):id ='unknown'for key in self.face_features:face_sim = self.face_model.CalculateSimilarity(query_feature, self.face_features[key])# print(face_sim)if face_sim >= sim_thresh:id = keybreakreturn iddef run(self):"""线程启动后执行的函数入口,采用run_flag控制流程的运行状态"""while True:if self.run_flag:ok, frame = self.cap.read()  # 读取一帧数据# print(frame.shape)if not ok:self.cap = cv2.VideoCapture(0)continuetry:detect_result = self.face_model.Detect(frame)# print(detect_result)for i in range(detect_result.size):face = detect_result.data[i].posif self.mode == 1:face_points = self.face_model.mark5(frame, face)face_crop_image = self.face_model.CropFace(frame, face_points)face_crop_image_feature = self.face_model.ExtractCroppedFace(face_crop_image)face_id = self.query_face_id(face_crop_image_feature)if face_id == 'unknown':cv2.rectangle(frame, (face.x, face.y), (face.x + face.width, face.y + face.height),(0, 0, 255), 2)frame = cv2ImgAddText(frame, self.face_name_dict[face_id], face.x - 30, face.y -30,textColor=(255, 0, 0), textSize=30)else:cv2.rectangle(frame, (face.x, face.y), (face.x + face.width, face.y + face.height),(255, 0, 0), 2)frame = cv2ImgAddText(frame, self.face_name_dict[face_id], face.x - 30, face.y - 30,textColor=(0, 255, 0), textSize=30)elif self.mode == 0:cv2.rectangle(frame, (face.x, face.y), (face.x + face.width, face.y + face.height),(255, 0, 0), 2)# cv2.putText(frame, f"pid:{PID}", (face.x, face.y), 0, 1, (0, 255, 0))self.cnn_predict_finish_sig.emit(frame)except Exception as e:self.cap = cv2.VideoCapture(0)print(e)

五、总结

深度学习人脸定位算法已经取得了非常显著的进展,已经被广泛应用于人脸识别、人脸表情分析、虚拟换脸等应用场景中,这些算法在不断地优化和改进中,未来还有很大的发展空间。

结束语

由于博主能力有限,本篇文章中提及的方法,也难免会有疏漏之处,希望您能热心指出其中的错误,以便下次修改时能以一个更完美更严谨的样子,呈现在大家面前。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/61721.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

macOS 的目录结构

文章目录 根目录 (/)常见目录及其用途示例目录结构注意事项根目录 (/)主要目录及其含义其他目录总结 macOS 的目录结构无论是在 Intel 架构还是 ARM 架构的 Mac 电脑上都是相同的。macOS 的目录结构遵循 Unix 和 BSD 的传统,具有许多标准目录。以下是一些主要目录及…

003 STM32基础、架构以及资料介绍——常识

注: 本笔记参考学习B站官方视频教程,免费公开交流,切莫商用。内容可能有误,具体以官方为准,也欢迎大家指出问题所在。 01什么是STM32(宏观) STM32属于一个微控制器,自带了各种常用通…

aws凭证(一)凭证存储

AWS 凭证用于验证身份,并授权对 DynamoDB 等等 AWS 服务的访问。配置了aws凭证后,才可以通过编程方式或从AWS CLI连接访问AWS资源。凭证存储在哪里呢?有以下几个方法: 一、使用文件存储 1、介绍 文件存储适用于长期和多账户配置…

力扣面试经典 150(上)

文章目录 数组/字符串1. 合并两个有序数组2. 移除元素3. 删除有序数组中的重复项4. 删除有序数组的重复项II5. 多数元素6. 轮转数组7. 买卖股票的最佳时机8. 买卖股票的最佳时机II9. 跳跃游戏10. 跳跃游戏II11. H 指数12. O(1)时间插入、删除和获取随机元素13. 除自身以外数组的…

聚焦AI存储,联想凌拓全力奔赴

【全球存储观察 | 科技热点关注】 每一个时代,都有每一个时代的骄傲。 在信息化时代,NAS文件存储肩负着非结构化数据管理与存储的重任,NetApp以其创新实力,赢得了全球存储市场的极高声誉。 在数智化时代,…

JavaWeb后端开发知识储备2

目录 1.HttpClient 2.微信小程序开发 3.Spring Cache 1.HttpClient 简单来说,HttpClient可以通过编码的方式在Java中发送Http请求 2.微信小程序开发 微信小程序的开发本质上是前端开发,对于后端程序员来说了解即可 3.Spring Cache Spring Cache 是…

基于CNN+RNNs(LSTM, GRU)的红点位置检测(pytorch)

1 项目背景 需要在图片精确识别三跟红线所在的位置,并输出这三个像素的位置。 其中,每跟红线占据不止一个像素,并且像素颜色也并不是饱和度和亮度极高的红黑配色,每个红线放大后可能是这样的。 而我们的目标是精确输出每个红点的…

树莓派搭建NextCloud:给数据一个安全的家

前言 NAS有很多方案,常见的有 Nextcloud、Seafile、iStoreOS、Synology、ownCloud 和 OpenMediaVault ,以下是他们的特点: 1. Nextcloud 优势: 功能全面:支持文件同步、共享、在线文档编辑、视频会议、日历、联系人…

数据集-目标检测系列- 花卉 鸡蛋花 检测数据集 frangipani >> DataBall

数据集-目标检测系列- 花卉 鸡蛋花 检测数据集 frangipani >> DataBall DataBall 助力快速掌握数据集的信息和使用方式,会员享有 百种数据集,持续增加中。 贵在坚持! 数据样例项目地址: * 相关项目 1)数据集…

初次体验加猜测信息安全管理与评估国赛阶段训练习

[第一部分] 网络安全事件响应 window操作系统服务器应急响应流程_windows 服务器应急响应靶场_云无迹的博客-CSDN博客 0、请提交攻击者攻击成功的第一时间,格式:YY:MM:DD hh:mm:ss1、请提交攻击者的浏览器版本2、请提交攻击者目录扫描所使用的工具名称…

Python Matplotlib 安装指南:使用 Miniconda 实现跨 Linux、macOS 和 Windows 平台安装

Python Matplotlib 安装指南:使用 Miniconda 实现跨 Linux、macOS 和 Windows 平台安装 Matplotlib是Python最常用的数据可视化工具之一,结合Miniconda可以轻松管理安装和依赖项。在这篇文章中,我们将详细介绍如何使用Miniconda在Linux、mac…

opencv-python 分离边缘粘连的物体(距离变换)

import cv2 import numpy as np# 读取图像,这里添加了判断图像是否读取成功的逻辑 img cv2.imread("./640.png") # 灰度图 gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 高斯模糊 gray cv2.GaussianBlur(gray, (5, 5), 0) # 二值化 ret, binary cv2…

KubeSphere内网环境实践GO项目流水线

KubeSphere内网环境实践GO项目流水线 kubesphere官方给出的流水线都是在公网环境下,并对接github、dockerhub等环境。本文在内网实践部署,代码库使用内网部署的gitlab,镜像仓库使用harbor。 1. 环境准备 1.1 部署kubesphere环境 参考官方…

UE5材质篇5 简易水面

不得不说,UE5里搞一个水面实在是相比要自己写各种反射来说太友好了,就主要是开启一堆开关,lumen相关的,然后稍微连一些蓝图就几乎有了 这里要改一个shading model,要这个 然后要增加一个这个node 并且不需要连接base …

浦语提示词工程实践(LangGPT版,服务器上部署internlm2-chat-1_8b,踩坑很多才完成的详细教程,)

首先,在InternStudio平台上创建开发机。 创建成功后点击进入开发机打开WebIDE。进入后在WebIDE的左上角有三个logo,依次表示JupyterLab、Terminal和Code Server,我们使用Terminal就行。(JupyterLab可以直接看文件夹)…

小白学多线程(持续更新中)

1.JDK中的线程池 JDK中创建线程池有一个最全的构造方法,里面七个参数如上所示。 执行流程分析: 模拟条件:10个核心线程数,200个最大线程数,阻塞队列大小为100。 当有小于十个任务要处理时,因为小于核心线…

40分钟学 Go 语言高并发:Context包与并发控制

Context包与并发控制 学习目标 知识点掌握程度应用场景context原理深入理解实现机制并发控制和请求链路追踪超时控制掌握超时设置和处理API请求超时、任务限时控制取消信号传播理解取消机制和传播链优雅退出、资源释放context最佳实践掌握使用规范和技巧工程实践中的常见场景…

音频信号采集前端电路分析

音频信号采集前端电路 一、实验要求 要求设计一个声音采集系统 信号幅度:0.1mVpp到1Vpp 信号频率:100Hz到16KHz 搭建一个带通滤波器,滤除高频和低频部分 ADC采用套件中的AD7920,转换率设定为96Ksps ;96*161536 …

SpringBoot中使用Sharding-JDBC实战(实战+版本兼容+Bug解决)

一、实战 1、引入 ShardingSphere-JDBC 的依赖 https://mvnrepository.com/artifact/org.apache.shardingsphere/shardingsphere-jdbc/5.5.0 <!-- https://mvnrepository.com/artifact/org.apache.shardingsphere/shardingsphere-jdbc --> <dependency><grou…

网络编程 day1.2~day2——TCP和UDP的通信基础(TCP)

笔记脑图 作业&#xff1a; 1、将虚拟机调整到桥接模式联网。 2、TCP客户端服务器实现一遍。 服务器 #include <stdio.h> #include <string.h> #include <myhead.h> #define IP "192.168.60.44" #define PORT 6666 #define BACKLOG 20 int mai…