【c++】继承学习(一):继承机制与基类派生类转换

Alt

🔥个人主页Quitecoder

🔥专栏c++笔记仓

Alt

朋友们大家好,本篇文章我们来学习继承部分

目录

  • `1.继承的概念和定义`
    • `继承的定义`
    • `继承基类成员的访问方式变化`
  • `2.基类和派生类对象赋值转换`
  • `3.继承中的作用域`

1.继承的概念和定义

继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段,它允许程序员在保持原有类特性的基础上进行扩展,增加功能,这样产生新的类,称派生类。继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用,继承是类设计层次的复用

通过继承,子类可以重用父类的代码,这有助于减少代码冗余和复杂性,并增加代码的可复用性

子类和父类是继承关系中的两个基本概念:

  1. 父类/ 基类:
    父类是一个更一般的类,它定义了一种通用的数据类型和方法,这些可以被其他类继承。它是继承关系中处于较高层次的类,其特性(属性和方法)可以传递到派生的类中。其他从父类继承的类会自动获得父类定义的所有公共和受保护的成员。

  2. 子类/ 派生类:
    子类是从一个或多个父类继承特性的类。它是继承关系中处于较低层次的类,可以继承其一或多个父类的属性和方法。子类通常会添加一些特有的属性和方法,或者重写某些从父类继承的方法来改变行为。子类集成了父类的特征,并可以拥有自己的特征。

简单来说,父类是派生过程的起点,提供了基础的属性和方法,而子类是继承的结果,它可以扩展和定制继承来的属性和方法。通过这种方式,子类和父类形成了一种层次结构,允许更高层次的代码重用和泛化

例如下面的例子:

在这里插入图片描述

父类包含一些通用的属性,人名和年龄,派生类继承自父类但具有不同的额外特性或方法

class Person
{
public:void Print(){cout << "name:" << _name << endl;cout << "age:" << _age << endl;}
protected:string _name = "jason"; // 姓名int _age = 18;  // 年龄
};
class Student : public Person
{
protected:int _stuid; // 学号
};class Teacher : public Person
{
protected:int _jobid; // 工号
};

继承后父类的Person的成员(成员函数+成员变量)都会变成子类的一部分。这里体现出了Student和Teacher复用了Person的成员

下面我们使用监视窗口查看Student和Teacher对象,可以看到变量的复用。调用Print可以看到成员函数的复用

int main()
{Student s;Teacher t;s.Print();t.Print();return 0;
}

在这里插入图片描述
在这里插入图片描述

继承的定义

格式

在这里插入图片描述
继承关系和访问限定符:

在这里插入图片描述

继承基类成员的访问方式变化

类成员/继承方式public继承protected继承private继承
基类的public成员派生类的public成员派生类的protected成员派生类的private成员
基类的protected成员派生类的protected成员派生类的protected成员派生类的private成员
基类的private成员在派生类中不可见在派生类中不可见在派生类中不可见
  1. 基类private成员在派生类中无论以什么方式继承都是不可见的。这里的不可见是指基类的私有成员还是被继承到了派生类对象中,但是语法上限制派生类对象不管在类里面还是类外面都不能去访问它

我们前面知道,类里面可以访问它的成员,但是private继承下,子类是无法访问父类的成员的

class Person
{
public:void Print(){cout << "name:" << _name << endl;cout << "age:" << _age << endl;}
protected:string _name = "jason"; // 姓名
private:int _age = 18;  // 年龄
};

我们这个类,拥有三个成员

class Student : public Person
{Student(){_name = "peter";}
protected:int _stuid; // 学号
};

在我们这个子类中,我们可以访问除了父类私有成员的其他成员父类的私有成员父类自己可以用,子类不可以直接使用

但是可以间接使用,比如我用子类来调用上面的Print函数

class Student : public Person
{void Fun(){_name = "abc";Print();}
protected:int _stuid; // 学号
};

在这里插入图片描述

  1. 基类private成员在派生类中是不能被访问,如果基类成员不想在类外直接被访问,但需要在派生类中能访问,就定义为protected可以看出保护成员限定符是因继承才出现的

  2. 实际上面的表格我们进行一下总结会发现,基类的私有成员在子类都是不可见。基类的其他成员在子类的访问方式 == 权限小的那个(成员在基类的访问限定符,继承方式),public > protected > private。

  3. 使用关键字class时默认的继承方式是private,使用struct时默认的继承方式是public,不过最好显示的写出继承方式

class Student : protected Person
{
public:void Fun(){_name = "abc";Print();}
protected:int _stuid; // 学号
};

公有的Print函数遇到protected继承变成保护类,无法外部直接调用:

在这里插入图片描述
保护是类外面不能访问,类里面还可以访问

在这里插入图片描述

在实际运用中一般使用都是public继承,几乎很少使用protetced/private继承,也不提倡使用protetced/private继承,因为protetced/private继承下来的成员都只能在派生类的类里面使用,实际中扩展维护性不强

2.基类和派生类对象赋值转换

  1. 派生类对象可以赋值给基类的对象 / 基类的指针 / 基类的引用。这里有个形象的说法叫切片或者切割。寓意把派生类中父类那部分切来赋值过去
class Person
{
protected:string _name; // 姓名string _sex;// 性别int _age; // 年龄
};
class Student : public Person
{
public:int _No; // 学号
};
Student sobj;
// 1.子类对象可以赋值给父类对象/指针/引用
Person pobj = sobj;
Person* pp = &sobj;
Person& rp = sobj;

每一个子类对象都是一个特殊的父类对象
在这里插入图片描述

当派生类对象被赋值给基类对象时会发生。在切片过程中,派生类对象的部分(通常是额外添加的成员变量和方法)会被忽略,只有基类中定义的部分会被复制到基类对象中。因此,派生类特有的成员变量和方法不会出现在基类对象中,就像它们被“切掉”了一样

在代码中:

class Student : public Person
{
public:int _No; // 学号
};
void Test()
{Student sobj;// 1.子类对象可以赋值给父类对象/指针/引用Person pobj = sobj;  // 切片发生在这里Person* pp = &sobj;  // 没有切片,因为 pp 指向的是一个 Student 对象Person& rp = sobj;   // 没有切片,因为 rp 引用的是一个 Student 对象
}
  • 在行 Person pobj = sobj; 中,由于 pobjPerson 类型的对象,sobj(一个 Student 对象)被赋值给 pobj 时,Student 类特有的 _No 成员被“切掉”,不会体现在 pobj 中。因此,pobj 中无法反映出 sobj 的完整状态和行为。

  • 在行 Person* pp = &sobj; 中,pp 是指向 Person 类型的指针,但它实际上指向了派生类 Student 的对象 sobj,没有发生切片,因为指针指向的是完整的 Student 对象。

  • 在行 Person& rp = sobj; 中,rp 是一个引用 Person 类型,它引用了 sobj,同样没有发生切片,因为引用关联的是 sobj 的完整实体。

实际上,在行 Person& rp = sobj; 中,引用 rp 的确是 Person 类型,但它并不导致对象切片。引用实际上并不拥有它所引用的对象,而只是提供另一个名称来访问现有对象。因此,当我们通过基类引用访问派生类对象时,并没有创建新的对象,也没有丢失派生类的任何部分。

在这行代码中:

Person& rp = sobj;

rp 实际上是对 sobj (它是一个 Student 类型的对象)的另一个访问方式。即使 rp 被声明为 Person 类型的引用,它实际引用的还是 sobj 的完整实体(包含 Person 部分和 Student 特有的部分)。但是,通过 rp 只能直接访问 sobj 中由 Person 定义的成员,Student 特有的成员(如 _No)不可以通过 rp 直接访问,除非进行了适当的强制转换

例子:

Person& rp = sobj;
rp._name = "Name";    // 可以访问,因为_name是Person的成员
// rp._No = 123;      // 错误!无法访问,因为_No是Student特有的成员,即使它实际上存在于sobj中

即使我们通过基类引用或指针操作对象,派生类对象的完整信息(所有成员变量和函数)仍然都在内存中,没有丢失。使用引用和指针时不会发生切片

对象切片的问题仅在派生类对象被赋值给另一个基类类型的对象时才会发生,比如当派生类对象被传值给一个基类对象的函数参数,或者通过赋值构造一个新的基类对象。这时候派生类特有的信息实际上会被切割掉并不会出现在新的基类对象中。在使用引用或指针时,这种情况并不会发生

  1. 基类对象不能赋值给派生类对象
  2. 基类的指针或者引用可以通过强制类型转换赋值给派生类的指针或者引用。但是必须是基类的指针是指向派生类对象时才是安全的。这里基类如果是多态类型,可以使用RTTI(Run-Time Type Information)的dynamic_cast 来进行识别后进行安全转换

3.继承中的作用域

  1. 在继承体系中基类和派生类都有独立的作用域
  2. 子类和父类中有同名成员,子类成员将屏蔽父类对同名成员的直接访问,这种情况叫隐藏,也叫重定义。(在子类成员函数中,可以使用 基类::基类成员 显示访问)
class Person
{
protected:string _name = "a"; // 姓名int _num = 111; // 身份证号
};
class Student : public Person
{
public:void Print(){cout << " 姓名:" << _name << endl;cout << " 身份证号:" << Person::_num << endl;cout << " 学号:" << _num << endl;}
protected:int _num = 999; // 学号
};
void Test()
{Student s1;s1.Print();
};

这段代码展示了成员隐藏,以及如何在派生类中访问基类的被隐藏成员的概念。

  • Student 类中,成员函数 Print 试图访问名称为 _num 的成员变量。由于派生类中存在同名成员,派生类的 _num 会隐藏基类的同名成员。

  • 如果在派生类中尝试访问一个被隐藏的基类成员,需要显式地使用类名限定符来指定基类的成员。在 Print 方法中使用 Person::_num 来访问基类 Person 中的 _num 成员。

输出结果将是:

姓名: a
身份证号: 111
学号: 999
  1. 需要注意的是如果是成员函数的隐藏,只需要函数名相同就构成隐藏
class A
{
public:void fun(){cout << "func()" << endl;}
};
class B : public A
{
public:void fun(int i){fun();cout << "func(int i)->" << i << endl;}
};

B中的fun和A中的fun 不是构成重载,因为不是在同一作用域
B中的fun和A中的fun 构成隐藏,成员函数满足函数名相同就构成隐藏

class B : public A
{
public:void fun(int i)  // 接受一个整型参数{fun();  // 编译器将会提示错误:找不到不带参数的 "fun" 函数。cout << "func(int i)->" << i << endl;}
};

在这个代码中,试图调用基类 Afun 函数。然而,由于派生类 B 提供了一个参数不同的版本 fun(int),所以基类 A 中的 fun 函数在派生类 B 的作用域中被隐藏了。C++ 规则规定,如果派生类提供了和基类同名的函数,基类中同名的函数在派生类的作用域就不再可见了

因此,在 B 类的成员函数 fun(int) 中,调用 fun() 试图无参数调用被隐藏的同名函数会无法编译,因为编译器认为我们试图调用 fun(int) 这个版本,但没有提供参数,导致参数不匹配

修复

为了调用基类 Afun 函数,我们必须显式地使用作用域解析运算符 :: 来指明我们想要调用的函数属于基类作用域:

class B : public A
{
public:void fun(int i){A::fun();  // 正确:调用基类 `A` 中的 `fun`cout << "func(int i)->" << i << endl;}
};

这样,当我们在类 Bfun(int i) 函数中调用 A::fun() 时,它将成功地调用基类 A 无参数的 fun 函数,然后输出整型参数 i 的值。

如果你希望在派生类中保留对基类中同名函数的访问能力(不希望隐藏),可以使用 using 声明在派生类中导入基类中的函数:

class B : public A
{
public:using A::fun;void fun(int i){fun();  // 正确:由于 "using A::fun;",此处调用的是基类 `A` 中的 `fun`cout << "func(int i)->" << i << endl;}
};

在实际编程中,为了避免混淆,通常不建议在派生类中使用与基类成员同名的变量。

本节内容到此结束!感谢大家阅读!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/6157.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Costas-Barker序列模糊函数仿真

文章目录 前言一、Costas 序列二、Barker 码三、Costas-Barker 序列模糊函数仿真1、MATLAB 核心代码2、仿真结果①、Costas-Barker 模糊函数图②、Costas-Barker 距离模糊函数图③、Costas-Barker 速度模糊函数图 四、资源自取 前言 Costas 码是一种用于载波同步的频率调制序列…

基于Ollama+AnythingLLM轻松打造本地大模型知识库

随着人工智能技术的快速发展&#xff0c;大型语言模型&#xff08;LLM&#xff09;已成为自然语言处理领域的重要工具。然而&#xff0c;这些模型的运行通常需要大量的计算资源和复杂的部署流程。为了解决这个问题&#xff0c;Ollama应运而生&#xff0c;成为了一个高效的本地大…

学浪的缓存怎么导出来

学浪的缓存导出问题困扰着许多用户&#xff0c;备份和管理数据变得至关重要。在数字化时代&#xff0c;保护和利用数据是企业和个人不可或缺的需求。在这篇文章中&#xff0c;我们将深入探讨学浪缓存导出的方法&#xff0c;为您解决疑惑&#xff0c;让您轻松掌握数据的安全与便…

237基于matlab的偏振态仿真

基于matlab的偏振态仿真&#xff0c;不同偏振态下光强计算。本仿真软件可以仿真波片对偏振光的相位调制过程。用户可以通过改变波片的类型&#xff0c;波片长轴与 X 轴的夹角&#xff0c;起偏器透光与 X 轴的夹角&#xff0c;检偏器透光轴与 X 轴的夹角等参数&#xff0c;来观察…

毫米波雷达原理(含代码)(含ARS548 4D毫米波雷达数据demo和可视化视频)

毫米波雷达原理 1. 传统毫米波雷达1.1 雷达工作原理1.2 单目标距离估计1.3 单目标速度估计1.4 单目标角度估计1.5 多目标距离估计1.6 多目标速度估计1.7多目标角度估计1.7 总结 3. FMCW雷达数据处理算法4. 毫米波雷达的目标解析(含python代码)5. ARS548 4D毫米波雷达数据demo(含…

docker学习笔记3:VmWare CentOS7安装与静态ip配置

文章目录 一、安装CentOS71、下载centos镜像2、安装二、设置静态ip三、xshell连接centos本专栏的docker环境是在centos7里安装,因此首先需要会安装centos虚拟机。 本篇博客介绍如何在vm虚拟机里安装centos7。 一、安装CentOS7 1、下载centos镜像 推荐清华源,下载如下版本 …

GPU虚拟化和算力隔离探讨

1. 术语介绍 术语 全称 说明 GPU Graphics Processing Unit 显卡 CUDA Compute Unified Device Architecture 英伟达2006年推出的计算API VT/VT-x/VT-d Intel Virtualization Technology -x表示x86 CPU&#xff0c;-d表示Device SVM AMD Secure Virtual Machine …

RabbitMQ入门教学(浅入浅出)

进程间通信 互联网的通讯时网络的基础&#xff0c;一般情况下互联网的资源数据对储存在中心服务器上&#xff0c;一般情况下个体对个体的访问仅限于局域网下&#xff0c;在公网即可完成资源的访问&#xff0c;如各种网站资源&#xff0c;下载资源&#xff0c;种子等。网络通讯…

小程序地理位置接口开通90%小白都避不开的误区

小程序地理位置接口有什么功能&#xff1f; 目前小程序的地理位置接口已经调整为审核制了&#xff0c;也就是说我们开发者如果小程序需要用到getlocation等接口的话&#xff0c;需要先在小程序后台进行开通申请&#xff0c;提交相关证明材料才可以获得接口使用权限。 小程序地理…

GPT-1

GPT 系列是 OpenAI 的一系列预训练模型&#xff0c;GPT 的全称是 Generative Pre-Trained Transformer&#xff0c;顾名思义&#xff0c;GPT 的目标是通过 Transformer&#xff0c;使用预训练技术得到通用的语言模型。目前已经公布论文的有 GPT-1、GPT-2、GPT-3。 最近非常火的…

Go协程的底层原理(图文详解)

为什么要有协程 什么是进程 操作系统“程序”的最小单位进程用来占用内存空间进程相当于厂房&#xff0c;占用工厂空间 什么是线程 进程如果比作厂房&#xff0c;线程就是厂房里面的生产线&#xff1a; 每个进程可以有多个线程线程使用系统分配给进程的内存&#xff0c;线…

【linux-汇编-点灯之思路-程序】

目录 1. ARM汇编中的一些注意事项2. IMXULL汇编点灯的前序&#xff1a;3. IMXULL汇编点灯之确定引脚&#xff1a;4. IMXULL汇编点灯之引脚功能编写&#xff1a;4.1 第一步&#xff0c;开时钟4.2 第二步&#xff0c;定功能&#xff08;MUX&#xff09;4.3 第三步&#xff0c;定电…

服务器遭受攻击后的黑洞状态应对策略及防护机制解析

引言 在网络安全领域中&#xff0c;当服务器遭受大规模DDoS攻击或其他恶意流量冲击时&#xff0c;为了保护服务的稳定性和其他正常用户的使用体验&#xff0c;往往会采取一种紧急防护手段——将服务器置于黑洞状态。所谓黑洞状态&#xff0c;即网络服务商暂时屏蔽掉对服务器的…

“中国汉字”的英语表达|柯桥考级英语生活英语商务口语培训

汉字&#xff0c;又称中文字、中国字、方块字。汉字是表意文字&#xff0c;一个汉字通常表示汉语里的一个词或一个语素&#xff0c;这就形成了音、形、义统一的特点。 我们通常用“Chinese character”表示“汉字”而不用“Chinese word”. &#x1f534; 例句&#xff1a; C…

QT:信号和槽

文章目录 信号和槽connect函数槽自定义槽第一种第二种 信号和槽 这里的信号和Linux的信号一样吗&#xff1f; 答案是差不多&#xff0c;但是也有一定的区别&#xff0c;而且也是两个不同的概念 信号有三个概念&#xff0c;一个是信号源&#xff0c;这个信号是由谁发送的&…

信息管理与信息系统就业方向及前景分析

信息管理与信息系统(IMIS)专业的就业方向十分广泛&#xff0c;包含计算机方向、企业信息化管理、数据处理和数据分析等&#xff0c;随着大数据、云计算、人工智能、物联网等技术的兴起&#xff0c;对能够处理复杂信息系统的专业人才需求激增&#xff0c;信息管理与信息系统就业…

Storm 技术揭秘:掌握实时大数据处理的终极神器!

Storm 是一个开源的分布式实时计算系统&#xff0c;由 Twitter 公司开发并贡献给 Apache 基金会。它可以处理大量的数据流&#xff0c;进行实时的数据挖掘、数据分析和数据可视化等任务。Storm 具有高容错性、可扩展性和低延迟的特点&#xff0c;适用于需要快速响应的场景&…

15、ESP32 Wifi

ESP32 的 WIFI 功能是模块内置的&#xff0c;通过 ESP32 的基础库调用一些函数就可以轻松使用它。 Wifi STA 模式&#xff1a; 让 ESP32 连接附近 WIFI&#xff0c;可以上网访问数据。 // 代码显示搜索连接附近指定的 WIFI // 通过 pin 按键可断开连接#include <WiFi.h>…

纯血鸿蒙APP实战开发——主页瀑布流实现

介绍 本示例介绍使用ArkUIWaterFlow组件和LazyForEach实现瀑布流场景。该场景多用于购物、资讯类应用。 效果图预览 使用说明 加载完成后显示整个列表&#xff0c;超过一屏时可以上下滑动。 实现思路 创建WaterFlowDataSource类&#xff0c;实现IDataSource接口的对象&…

JAVA面试之MQ

如何保证消息的可靠传输&#xff1f;如果消息丢了怎么办 数据的丢失问题&#xff0c;可能出现在生产者、MQ、消费者中。 &#xff08;1&#xff09;生产者发送消息时丢失&#xff1a; ①生产者发送消息时连接MQ失败 ②生产者发送消息到达MQ后未找到Exchange(交换机) ③生产者发…