《TCP/IP网络编程》学习笔记 | Chapter 11:进程间通信

《TCP/IP网络编程》学习笔记 | Chapter 11:进程间通信

  • 《TCP/IP网络编程》学习笔记 | Chapter 11:进程间通信
    • 进程间通信的基本概念
      • 通过管道实现进程间通信
      • 通过管道进行进程间双向通信
    • 运用进程间通信
    • 习题
      • (1)什么是进程间通信?分别从概念和内存的角度进行说明。
      • (2)进程间通信需要特殊的IPC机制,这是由操作系统提供的。进程间通信时为何需要操作系统的帮助?
      • (3)“管道”是典型的IPC技术。关于管道,请回答如下问题。
      • (4)编写示例复习IPC技法,使2个进程相互交换3次字符串。当然,这2个进程应具有父子关系,各位可指定任意字符串。

《TCP/IP网络编程》学习笔记 | Chapter 11:进程间通信

进程间通信的基本概念

进程间通信(Inter Process Communication)意味着这个不同进程间可以交换数据,为了完成这一点,操作系统中应提供两个进程可以同时访问内存空间。

因为两个进程间具有完全独立的内存空间,就连通过 fork 函数创建的子进程也不会与父进程共享内存空间,因此通信需要特殊的方式。

通过管道实现进程间通信

基于管道(PIPE)的进程间通信结构模型:

在这里插入图片描述

管道并非属于进程的资源,而是和套接字一样,属于操作系统(也就不是fork函数的复制对象)。所以,两个进程通过操作系统提供的内存空间进行通信。下面介绍创建管道的函数。

#include <unistd.h>int pipe(int filedes[2]);

成功返回 0,失败返回 -1。

参数:

  • filedes[0]:通过管道接收数据时使用的文件描述符,即管道出口
  • filedes[1]:通过管道传输数据时使用的文件描述符,即管道入口

父进程调用该函数时将创建管道,此时父进程可以读写同一管道。但父进程的目的是与子进程进行数据交换,因此需要将入口或出口中的1个文件描述符传递给子进程。如何完成传递呢?答案就是调用 fork 函数。

示例程序:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>int main()
{int fd[2];char str[] = "hello PIPE";char buff[30];pipe(fd);pid_t pid = fork();if (pid == 0) // 子进程{write(fd[1], str, sizeof(str)); // 写入管道}else{                                    // 父进程read(fd[0], buff, sizeof(buff)); // 读取管道printf("%s\n", buff);}return 0;
}

运行结果:

在这里插入图片描述

上述示例中的通信方式及路径如下图所示。重点在于,父子进程都可以访问管道的I/O路径,但子进程仅用输入路径,父进程仅用输出路径。

在这里插入图片描述

以上就是管道的基本原理及通信方法。应用管道时还有一部分内容需要注意,通过双向通信实例进一步说明。

通过管道进行进程间双向通信

下面创建2个进程通过1个管道进行双向数据交换的实例,其通信方式如下图所示:

在这里插入图片描述

可以看出,通过1个管道可以进行双向通信。但采用这种模型是需格外注意。先给出示例:

#include <stdio.h>
#include <unistd.h>#define BUF_SIZE 30int main(int argc, char *argv[])
{int fds[2];char str1[] = "Who are you?";char str2[] = "Thank you for your message";char buf[BUF_SIZE];pid_t pid;pipe(fds);pid = fork();if (pid == 0){write(fds[1], str1, sizeof(str1)); /* 18-21行: 子进程运行区域. 通过第18行传输数据, 第20行接收数据. 需要特别关注第19行的sleep函数. 关于这一点稍后再讨论, 希望各位自己思考其含义 */sleep(2);read(fds[0], buf, BUF_SIZE);printf("Child proc output: %s \n", buf);}else{read(fds[0], buf, BUF_SIZE); /* 25-28行 父进程运行区域. 通过第25行接收数据, 这是为了接收第18行的子进程传输的数据. 另外, 通过第27行传输数据, 这些数据被第20行的子进程接收 */printf("Parent proc output: %s \n", buf);write(fds[1], str2, sizeof(str2));sleep(3); /* 父进程先终止时会弹出命令提示符. 这时子进程仍在工作, 故不会产生问题. 这条语句主要是为了防止子进程终止前弹出命令提示符(故可删除). 注释这条代码后再运行程序, 各位就会明白我的意思. */}return 0;
}

运行结果:

在这里插入图片描述

运行结果应该和大家的预想一致. 这次注释第18行代码后再运行,出现错误。

数据进入管道后成为无主数据,先读的会读取走,因此如果子进程给父进程发了数据,子进程比父进程先读,那么数据又会被子进程读走。因此,注释第18行将产生问题。在第19行,子进程将读回自己在第17行向管道发送的数据。结果,父进程调用 read 函数后将无限等待数据进入管道。

从上述实例中可以看出,只用1个管道进行双向通信并非易事。为了实现这一点,程序需要预测并控制运行流程,这在每种系统中都不同,可以视为不可能完成的任务。既然如此,该如何进行双向通信呢?

答案是创建2个管道,各自负责不同的数据流动。如下图所示:

在这里插入图片描述

示例程序:

#include <stdio.h>
#include <unistd.h>#define BUF_SIZE 30int main(int argc, char *argv[])
{int fds1[2], fds2[2];char str1[] = "Who are you?";char str2[] = "Thank you for your message";char buf[BUF_SIZE];pid_t pid;pipe(fds1), pipe(fds2); /* 创建两个管道. */pid = fork();if (pid == 0){write(fds1[1], str1, sizeof(str1)); /* 第18 24行: 子进程可以通过数组fds1指向的管道向父进程传输数据. */read(fds2[0], buf, BUF_SIZE);       /* 第19 26行: 父进程可以通过数组fds2指向的管道向子进程发送数据. */printf("Child proc output: %s \n", buf);}else{read(fds1[0], buf, BUF_SIZE);printf("Parent proc output: %s \n", buf);write(fds2[1], str2, sizeof(str2));sleep(3); /* 第27行: 没有太大的意义, 只是为了延迟父进程终止而插入的代码 */}return 0;
}

运行结果:

在这里插入图片描述

运用进程间通信

下面扩展第10章的echo_mpserv.c,添加如下功能:“将回声客户端传输的字符串按序保存到文件中”。

我希望将该任务委托给另外的进程。换言之,另行创建进程,从向客户端提供服务的进程读取字符串信息。当然,该过程中需要创建用于接收数据的管道。

下面给出示例。该示例可以与任意回声客户端配合运行,但我们将用第10章介绍过的 echo_mpclient.c。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <sys/wait.h>
#include <arpa/inet.h>
#include <sys/socket.h>#define BUF_SIZE 100void error_handling(char *message);
void read_childproc(int sig);int main(int argc, char *argv[])
{int serv_sock, clnt_sock;struct sockaddr_in serv_adr, clnt_adr;int fds[2];pid_t pid;struct sigaction act;socklen_t adr_sz;int str_len, state;char buf[BUF_SIZE];if (argc != 2){printf("Usage : %s <port> \n", argv[0]);exit(1);}act.sa_handler = read_childproc;sigemptyset(&act.sa_mask);act.sa_flags = 0;state = sigaction(SIGCHLD, &act, 0);serv_sock = socket(PF_INET, SOCK_STREAM, 0);memset(&serv_adr, 0, sizeof(serv_adr));serv_adr.sin_family = AF_INET;serv_adr.sin_addr.s_addr = htonl(INADDR_ANY);serv_adr.sin_port = htons(atoi(argv[1]));if (bind(serv_sock, (struct sockaddr *)&serv_adr, sizeof(serv_adr)) == -1){error_handling("bind() error");}if (listen(serv_sock, 5) == -1){error_handling("listen() error");}pipe(fds); /* 第53 54行: 第54行创建负责保存文件的进程 */pid = fork();if (pid == 0) /* 第55行-68行: 第54行创建的子进程运行区域. 该区域从管道出口fds[0]读取并保存到文件中. 另外, 上述服务器端并不终止运行, 而是不断向客户端提供服务. 因此, 数据在文件中积累到一定程度即关闭文件, 该过程通过第61行的循环完成. */{FILE *fp = fopen("echomsg.txt", "wt");char msgbuf[BUF_SIZE];int i, len;for (i = 0; i < 10; i++){len = read(fds[0], msgbuf, BUF_SIZE);fwrite((void *)msgbuf, 1, len, fp);}fclose(fp);return 0;}while (1){adr_sz = sizeof(clnt_adr);clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_adr, &adr_sz);if (clnt_sock == -1){continue;}else{puts("new client connected...");}pid = fork();if (pid == 0){close(serv_sock);while ((str_len = read(clnt_sock, buf, BUF_SIZE)) != 0){write(clnt_sock, buf, str_len);write(fds[1], buf, str_len); /* 第71行: 第84行通过fork 函数创建的所有子进程将复制第53行创建的管道的文件描述符. 因此, 可以通过管道入口fds[1]传递字符串信息. */}close(clnt_sock);puts("client disconnected...");return 0;}else{close(clnt_sock);}}close(serv_sock);return 0;
}void read_childproc(int sig)
{pid_t pid;int status;pid = waitpid(-1, &status, WNOHANG);printf("removed proc id: %d \n", pid);
}void error_handling(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}

运行结果如下所示。

服务器端:

在这里插入图片描述

客户端:

在这里插入图片描述

习题

(1)什么是进程间通信?分别从概念和内存的角度进行说明。

概括性地说,进程间通信是指两个进程之间交换数据。但是从内存的角度看,可以理解为两个进程共有内存。因为共享的内存区域存在,可以进行数据交换。

(2)进程间通信需要特殊的IPC机制,这是由操作系统提供的。进程间通信时为何需要操作系统的帮助?

要想实现IPC机制,需要共享的内存,但由于两个进程之间不共享内存,因此需要操作系统的帮助。

(3)“管道”是典型的IPC技术。关于管道,请回答如下问题。

a. 管道是进程间交换数据的路径。如何创建此路径?由谁创建?
b. 为了完成进程间通信,2个进程需同时连接管道。那2个进程如何连接到同一管道?
c. 管道允许进行2个进程间的双向通信。双向通信中需要注意哪些内容?

答:

a. 管道是由pipe函数产生的,实际产生管道的主体是操作系统。
b. pipe函数通过输入参数返回管道的输入输出文件描述符。这个文件描述符在fork函数中复制到了其子进程,因此,父进程和子进程可以同时访问同一管道。
c. 管道并不管理进程间的数据通信。因此,如果数据流入管道,任何进程都可以读取数据。因此,要合理安排共享空间的输入和读取。最好建立2个管道进行双向通信。

(4)编写示例复习IPC技法,使2个进程相互交换3次字符串。当然,这2个进程应具有父子关系,各位可指定任意字符串。

#include <stdio.h>
#include <unistd.h>
#define BUF_SIZE 40int main()
{int fds1[2], fds2[2];char pstr1[] = "Parent process first message!";char pstr2[] = "Parent process second message!";char pstr3[] = "Parent process third message!";char cstr1[] = "Child process first message!";char cstr2[] = "Child process second message!";char cstr3[] = "Child process third message!";char message[BUF_SIZE];pid_t pid;pipe(fds1);pipe(fds2);pid = fork();if (pid){write(fds1[1], pstr1, sizeof(pstr1));read(fds2[0], message, BUF_SIZE);printf("Message from child process: %s \n", message);write(fds1[1], pstr2, sizeof(pstr2));read(fds2[0], message, BUF_SIZE);printf("Message from child process: %s \n", message);write(fds1[1], pstr3, sizeof(pstr3));read(fds2[0], message, BUF_SIZE);printf("Message from child process: %s \n", message);}else{read(fds1[0], message, BUF_SIZE);printf("Message from parent process: %s \n", message);write(fds2[1], cstr1, sizeof(cstr1));read(fds1[0], message, BUF_SIZE);printf("Message from parent process: %s \n", message);write(fds2[1], cstr2, sizeof(cstr2));read(fds1[0], message, BUF_SIZE);printf("Message from parent process: %s \n", message);write(fds2[1], cstr3, sizeof(cstr3));}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/60723.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

推荐一款高效的网站数据抓取工具:SysNucleus WebHarvy

SysNucleus WebHarvy是一款高效的网站数据抓取工具&#xff0c;支持从网页中提取文本、图像、URL 和电子邮件等内容&#xff0c;无需编写任何代码或脚本即可轻松实现数据抓取。用户可以通过 WebHarvy 内置的浏览器直观地浏览网页&#xff0c;指引软件提取所需的数据。它通过自动…

道陟科技EMB产品开发进展与标准设计的建议|2024电动汽车智能底盘大会

11月12日&#xff0c;2024电动汽车智能底盘大会在重庆开幕。会议由中国汽车工程学会主办&#xff0c;电动汽车产业技术创新战略联盟、中国汽车工程学会智能底盘分会、智能绿色车辆与交通全国重点实验室承办。本届大会围绕电动汽车智能底盘相关技术发展与融合&#xff0c;满足高…

Spring Authorization Server OAuth2.1

Spring Authorization Server介绍 Spring Authorization Server 是一个框架&#xff0c;它提供了 OAuth 2.1 和 OpenID Connect 1.0 规范以及其他相关规范的实现。 它建立在 Spring Security 之上&#xff0c;为构建 OpenID Connect 1.0 身份提供者和 OAuth2 授权服务器产品提供…

C++ 优先算法 —— 三数之和(双指针)

目录 题目&#xff1a;三数之和 1. 题目解析 2. 算法原理 ①. 暴力枚举 ②. 双指针算法 不漏的处理&#xff1a; 去重处理&#xff1a; 固定一个数 a 的优化&#xff1a; 3. 代码实现 Ⅰ. 暴力枚举&#xff08;会超时 O&#xff08;N&#xff09;&#xff09; Ⅱ.…

(三十三)队列(queue)

文章目录 1. 队列&#xff08;queue&#xff09;1.1 定义1.2 函数1.3 习题1.3.1 例题&#xff08;周末舞会&#xff09; 2. 双向队列&#xff08;deque&#xff09;2.1 定义2.2 函数2.3 题目2.3.1 例题&#xff08;打BOSS&#xff09; 1. 队列&#xff08;queue&#xff09; 队…

《FreeRTOS任务基础知识以及任务创建相关函数》

目录 1.FreeRTOS多任务系统与传统单片机单任务系统的区别 2.FreeRTOS中的任务&#xff08;Task&#xff09;介绍 2.1 任务特性 2.2 FreeRTOS中的任务状态 2.3 FreeRTOS中的任务优先级 2.4 在任务函数中退出 2.5 任务控制块和任务堆栈 2.5.1 任务控制块 2.5.2 任务堆栈…

springboot的社区团购系统设计录像

springboot的社区团购系统设计录像 springboot的社区团购系统设计

力扣每日一题

行变成回文&#xff1a; 对于每一行&#xff0c;遍历前半部分的元素&#xff0c;与后半部分的元素比较。如果不相等&#xff0c;计数器加 1&#xff0c;表示需要翻转一次。 列变成回文&#xff1a; 将矩阵转置&#xff0c;使用与行类似的方式对每一列进行统计。可以使用 Python…

linux c 语言回调函数学习

动机 最近在看 IO多路复用&#xff0c;包括 select() poll () epoll() 的原理以及libevent&#xff0c; 对里面提及的回调机制 比较头大&#xff0c;特写此文用例记录学习笔记。 什么是回调函数 网上看到的最多的一句话便是&#xff1a;回调函数 就是 函数指针的一种用法&am…

游戏引擎学习第九天

视频参考:https://www.bilibili.com/video/BV1ouUPYAErK/ 修改之前的方波数据&#xff0c;改播放正弦波 下面主要讲关于浮点数 1. char&#xff08;字符类型&#xff09; 大小&#xff1a;1 字节&#xff08;8 位&#xff09;表示方式&#xff1a;char 存储的是一个字符的 A…

# Python IDE的介绍和选择 --- 《跟着小王学Python》

Python IDE的介绍和选择 — 《跟着小王学Python》 《跟着小王学Python》 是一套精心设计的Python学习教程&#xff0c;适合各个层次的学习者。本教程从基础语法入手&#xff0c;逐步深入到高级应用&#xff0c;以实例驱动的方式&#xff0c;帮助学习者逐步掌握Python的核心概念…

柯桥生活英语口语学习“面坨了”英语怎么表达?

“面坨了”英语怎么表达&#xff1f; 要想搞清楚这个表达&#xff0c;首先&#xff0c;我们要搞明白“坨”是啥意思&#xff1f; 所谓“坨”就是指&#xff0c;面条在汤里泡太久&#xff0c;从而变涨&#xff0c;黏糊凝固在一起的状态。 有一个词汇&#xff0c;很适合用来表达这…

ZeroSSL HTTPS SSL证书ACMESSL申请3个月证书

目录 一、引言 二、准备工作 三、申请 SSL 证书 四、证书选型 五、ssl重要性 一、引言 目前免费 Lets Encrypt、ZeroSSL、BuyPass、Google Public CA SSL 证书&#xff0c;一般免费3-6个月。从申请难易程度分析&#xff0c;zerossl申请相对快速和简单&#xff0c;亲测速度非…

Java连接MySQL(测试build path功能)

Java连接MySQL&#xff08;测试build path功能&#xff09; 实验说明下载MySQL的驱动jar包连接测试的Java代码 实验说明 要测试该情况&#xff0c;需要先安装好MySQL的环境&#xff0c;其实也可以通过测试最后提示的输出来判断build path是否成功&#xff0c;因为如果不成功会直…

第四节-OSI-网络层

数据链路层&#xff1a;二层--MAC地址精确定位 Ethernet 2&#xff1a; 报头长度&#xff1a;18B 携带的参数&#xff1a;D MAC /S MAC/TYPE(标识上层协议)/FCS 802.3 报头长度&#xff1a;26B 携带的参数&#xff1a;D MAC/S MAC/LLC(标识上层协议)/SNAP&#xff08;标识…

labview实现功能性全局变量

在日常的项目中&#xff0c;笔者最长使用的就是全局变量&#xff0c;这样用起来不仅省心省力&#xff0c;而且传值也很方便&#xff0c;没有什么阻碍&#xff0c;想要传什么数据一根线拉过去就可以了。后面才知道如果一直使用全局变量会导致读写卡死的状态&#xff0c;而且还有…

网络安全之SQLMAP _DNS注入配置方法

网上针对sqlmap进行dns注入的相关文章太少&#xff0c;只是简单介绍了下–dns-domain参数&#xff0c;相关的实战文章要么就模糊或者一笔带过&#xff0c;。然后参考网上的方法重新整理了一遍&#xff0c;简单理解。 需要准备的东西&#xff0c;sqlmap、windows盲注一个、两个…

pycharm快速更换虚拟环境

目录 1. 选择Conda 虚拟环境2. 创建环境3. 直接选择现有虚拟环境 1. 选择Conda 虚拟环境 2. 创建环境 3. 直接选择现有虚拟环境

联想“喜新厌旧”

科技新知 原创作者丨萧维 编辑丨蕨影 十月份&#xff0c;联想很忙。 先是2024联想科技创新大会15日在美国华盛顿州西雅图举行&#xff0c;联想大秀了一下自己在人工智能领域的创新产品、技术和解决方案&#xff0c;英特尔、AMD、英伟达三巨头更同时为其站台&#xff1b;后是与…

[白月黑羽]关于仿写类postman功能软件题目的解答

原题&#xff1a; 答&#xff1a; python文件如下 from PySide6.QtWidgets import QApplication, QMessageBox,QTableWidgetItem,QHeaderView,QWidget,QTableWidget from PySide6.QtCore import QEvent,QObject from PySide6.QtUiTools import QUiLoader import time import …