【C++篇】类与对象深度解析(六):全面剖析拷贝省略、RVO、NRVO优化策略

文章目录

前言

💬 欢迎讨论:如果你在学习过程中有任何问题或想法,欢迎在评论区留言,我们一起交流学习。你的支持是我继续创作的动力!

👍 点赞、收藏与分享:觉得这篇文章对你有帮助吗?别忘了点赞、收藏并分享给更多的小伙伴哦!你们的支持是我不断进步的动力!
🚀分享给更多人:如果你觉得这篇文章对你有帮助,欢迎分享给更多对C++感兴趣的朋友,让我们一起进步!

C++ 作为一门底层高效语言,在设计时便考虑到了性能和资源管理。程序员在编写代码时,常常面临对象的频繁创建与销毁,尤其是在函数返回值的传递过程中,可能会触发多次对象的拷贝构造或移动操作。为了减少这些不必要的拷贝,C++ 编译器会采用一些优化技术,如 拷贝省略(Copy Elision)、返回值优化(Return Value Optimization,RVO)和 命名返回值优化(Named Return Value Optimization,NRVO)。

读者须知

RVO 与NRVO的启用条件


虽然 RVO 和 NRVO 是编译器自动完成的优化,但是这些优化并不总是启用,具体取决于编译器的实现和配置。例如:
因此,尽管 RVO 是 C++ 标准的一部分,但 NRVO 则并不总是强制执行,尤其是在复杂场景下,不同的编译器版本可能表现出不同的优化行为。

  • 在 C++17 之前,RVO 是一个可选优化,但在 C++17 标准之后,RVO 被强制启用,编译器必须在符合条件的情况下执行拷贝省略。
  • NRVO 通常依赖于编译器的智能分析,虽然大多数现代编译器都能支持 NRVO,但其效果和激进程度因编译器和版本的不同而有所差异。

因此,尽管 RVO 是 C++ 标准的一部分,但 NRVO 则并不总是强制执行,尤其是在复杂场景下,不同的编译器版本可能表现出不同的优化行为。

如何确认优化是否启用?


你可以通过编译时的优化级别和编译器选项来控制 RVO 和 NRVO 的启用。通常使用 -O2 或 -O3 优化级别可以启用这些优化。如果你希望查看编译器具体是否执行了这些优化,可以通过以下方式进行检查:

  • GCC:使用 -fno-elide-constructors 禁用拷贝省略。
  • Clang:通过 -fno-elide-constructors 禁用拷贝省略。
  • MSVC:Visual Studio 中可以通过 /Od(禁用优化)或 /O2启用优化)控制优化行为。

1. 按值传递与拷贝省略

1.1  按值传递概念

在 C++ 中,按值传递意味着函数参数是通过创建实参对象的副本来传递的。通常会触发拷贝构造或移动构造函数。按值传递可以在函数内部修改参数副本,而不影响原始实参对象,也就是说形式参数无法影响实参,两个创建的对象指向不同空间。

当我们传递一个对象给函数时,编译器会为这个对象创建一个副本。这个副本的创建需要调用 拷贝构造函数,并且在函数执行结束后,该副本会被销毁,从而调用 析构函数。这一过程涉及到内存的分配与释放,对于庞大的对象,可能会导致性能下降,如加载缓慢甚至导致无法加载等问题。

1.2 示例代码
#include <iostream>
using namespace std;class A {
public:A(int a = 0) : _a1(a) {cout << "A(int a) 构造函数被调用, _a = " << _a1 << endl;}A(const A& aa) : _a1(aa._a1) {cout << "A(const A& aa) 拷贝构造函数被调用" << endl;}A(A&& aa) noexcept : _a1(aa._a1) {cout << "A(A&& aa) 移动构造函数被调用" << endl;}~A() {cout << "~A() 析构函数被调用" << endl;}private:int _a1;
};void f1(A aa) {}  // 按值传递int main() {A aa1(10);  // 创建对象 aa1f1(aa1);    // 按值传递,调用拷贝构造return 0;
}
1.3 按值传递的性能影响

在上述代码中,按值传递会创建对象的副本,并调用 拷贝构造函数 或 移动构造函数,构造函数结束时,析构函数将会被调用。这一过程虽然实现了副本的值传递,但对于庞大对象集体,频繁的拷贝和析构会导致性能问题。

1.3.1 完全不优化

在没有任何优化的情况下,按值传递时会创建一个对象的副本,并调用拷贝构造函数。返回对象后,析构函数将被调用两次:一次是为原对象,另一次是为副本。

输出结果:

A(int a) 构造函数被调用, _a = 10
A(const A& aa) 拷贝构造函数被调用
~A() 析构函数被调用
~A() 析构函数被调用

解释:

  • 对象 aa1 在主函数中通过构造函数被创建。
  • 按值传递时,编译器调用了拷贝构造函数,为 aa1 创建了副本。
  • 当函数 f1 执行结束后,副本被销毁,调用了析构函数。
  • 当 main 函数结束时,原始对象 aa1 也被销毁。

1.4 不同编译器下的优化表现
1.4.1 Visual Studio 2019普通优化

Visual Studio 2019 中,编译器在普通优化模式下,依然会调用拷贝构造函数。

 输出结果:

A(int a) 构造函数被调用, _a = 10
A(const A& aa) 拷贝构造函数被调用
~A() 析构函数被调用
~A() 析构函数被调用

尽管编译器启用了部分优化,但在这种按值传递的情况下,仍然需要调用拷贝构造函数,并最终调用两次析构函数。

1.4.2 Visual Studio 2022激进优化

VS2022 的优化更加激进,它能够跳过对象的拷贝构造,直接传递原始对象的引用。通过内存重用和别名优化,编译器可以避免创建副本。

输出结果

A(int a) 构造函数被调用, _a = 10
~A() 析构函数被调用

解释: 

。在 VS2022 中,拷贝构造函数被优化掉,编译器直接将原对象 aa1 传递给函数 f1。也就是说,就是编译器检索发现函数里面aa不会修改,就在函数里面使用aa1即可,此时函数里面的aa就是aa1的别名
。无需创建副本,也不需要析构副本,只在 main 函数结束时销毁 aa1。

 1.5 小结

  • 按值传递通常会触发拷贝构造或移动构造,并在函数结束时触发析构函数。
  • Visual Studio 2019 中,普通优化仍然会调用拷贝构造函数。
  • Visual Studio 2022 的激进优化则可以跳过拷贝构造,避免副本的创建。

2. 返回值优化(RVO) 

2.1 RVO 的概念

返回值优化(RVO) 是编译器的一种优化技术,它允许编译器在函数返回临时对象时,
直接在调用者的内存空间中构造该对象,避免不必要的拷贝或移动构造。

 当函数返回一个局部临时对象时,通常会触发一次拷贝构造或移动构造,因为局部对象需要从函数内部复制到外部。然而,RVO 能够避免这种多余的拷贝或移动操作,编译器直接在调用者的内存空间中构造返回的对象。

2.2 示例代码

A f2() {
    A aa(5);
    return aa;  // 返回局部临时对象
}

int main() {
    A a2 = f2();  // 接收返回值
    return 0;
}

2.3 不同优化下的表现
2.3.1 完全不优化的情况

在没有启用 RVO 的情况下,返回值会经历多次拷贝操作:

  1. 在 f2() 内部创建局部对象 aa
  2. 创建一个临时对象,将 aa 拷贝到这个临时对象中。
  3. 最后将临时对象拷贝给 a2,并调用两次拷贝构造函数。

输出结果

A(int a) 构造函数被调用, _a = 5
A(const A& aa) 拷贝构造函数被调用
A(const A& aa) 拷贝构造函数被调用
~A() 析构函数被调用
~A() 析构函数被调用
~A() 析构函数被调用

解释

  • 局部对象 aa 在 f2 ()函数内创建,并通过两次拷贝构造传递给 a2
  • 三次析构函数分别销毁局部对象 aa、临时对象和最终返回的 a2

2.3.2 启用 RVO 的情况(Visual Studio 2019)

在 Visual Studio 2019 中,编译器启用了 RVO 优化,避免了创建临时对象,直接将aa拷贝给a2。

输出结果

A(int a) 构造函数被调用, _a = 5
A(const A& aa) 拷贝构造函数被调用
~A() 析构函数被调用
~A() 析构函数被调用

解释

  • 编译器避免了临时对象的创建,但仍通过拷贝构造将 aa 传递给 a2
  • 整个过程调用了一次拷贝构造,并在 a2 和 aa 被销毁时分别调用析构函数。

                                                     

2.3.3 激进 RVO 的情况(Visual Studio 2022)

Visual Studio 2022 实现了更加激进的 RVO 优化。编译器直接在 a2 的内存空间中构造对象 aa,完全跳过拷贝构造。其实就是下文讲的NRVO

输出结果

A(int a) 构造函数被调用, _a = 5
~A() 析构函数被调用

解释

  • aa 直接在 a2 的内存空间中构造,避免了临时对象和拷贝构造。
  • 最终只需要调用一次析构函数来销毁 a2

                                                                  

2.4 小结

  • RVO 主要用于返回临时对象的优化,能够在返回局部对象时避免多次拷贝。
  • Visual Studio 2019 中启用了 RVO,减少了临时对象的创建,但仍会调用一次拷贝构造。
  • Visual Studio 2022 则更加激进,完全避免了拷贝构造,直接在返回对象的目标内存空间中构造该对象。

3. 命名返回值优化(NRVO)

3.1 NRVO 的概念

命名返回值优化(NRVO) 是 RVO 的扩展,专门用于优化函数返回命名局部变量的情况。编译器会在调用者的内存空间中直接构造该命名对象,避免临时对象和拷贝操作。

NRVO 允许编译器在返回函数内的命名局部变量时进行优化,直接在目标对象的内存中构造该局部变量,而不是创建一个临时对象进行拷贝或移动。这一优化虽然不像 RVO 那样是 C++ 标准的强制要求,但大多数现代编译器都会尝试实现这种优化。 

3.2 示例

A f3() {
    A a(3);
    return a;  // 返回命名局部变量
}

int main() {
    A a2 = f3();  // 使用返回值
    return 0;
}

解释: 

在这段代码中,函数 f3 返回命名局部变量 a。没有 NRVO 优化的情况下,a 会首先被拷贝到一个临时对象中,然后该临时对象会被拷贝到 a2

3.3 优化下的不同表现
3.3.1 完全不优化的情况

在没有 NRVO 优化的情况下,返回的命名对象 a 会经历以下拷贝过程:

  1. 在 f3 函数内创建局部对象 a
  2. 创建一个临时对象,将 a 拷贝到这个临时对象中。
  3. 最后将临时对象拷贝到 a2 中。

输出结果

A(int a) 构造函数被调用, _a = 3
A(const A& aa) 拷贝构造函数被调用
A(const A& aa) 拷贝构造函数被调用
~A() 析构函数被调用
~A() 析构函数被调用
~A() 析构函数被调用

解释

  • 局部变量 a 在 f3 中创建,并通过两次拷贝构造传递给 a2
  • 由于没有启用 NRVO,因此返回值会触发两次拷贝构造和三次析构函数调用。
3.3.2 启用 NRVO 的情况(Visual Studio 2019 和 2022)

在 Visual Studio 2019 和 Visual Studio 2022 中,NRVO 技术的实现基本一致。局部对象 a 会直接在 a2 的内存空间中构造,没有临时对象和多余的拷贝操作。

输出结果

A(int a) 构造函数被调用, _a = 3
~A() 析构函数被调用

解释

  • 通过 NRVO,编译器直接在 a2 的内存空间中构造局部对象 a,避免了拷贝构造。
  • 整个过程只需要一次析构调用,销毁 a2
3.4 Visual Studio 2022 的优化

复杂场景中的 NRVO: Visual Studio 2022 在处理复杂的函数返回场景时,表现更为激进。例如在多层嵌套、条件判断等情况下,NRVO 依然有效,而某些编译器可能在复杂条件下无法实现优化。

复杂的 NRVO 示例: 

A f4(bool flag) {A a1(1);A a2(2);if (flag) {return a1;} else {return a2;}
}int main() {A a3 = f4(true);  // 使用返回值return 0;
}

Visual Studio 2022 依然能够直接在 a3 的内存空间中构造返回值(无论是 a1 还是 a2),而不会创建临时对象或额外的拷贝构造。并且这种情况下发现只需要返回a1,那甚至可能会跳过a2的创建。

输出结果: 

A(int a) 构造函数被调用, _a = 1
~A() 析构函数被调用

3.5 小结

。NRVO 针对命名局部变量的优化,能够在返回命名变量时避免临时对象和拷贝构造。
。isual Studio 2019 和 2022 的 NRVO 实现基本一致,能够在大多数情况下避免拷贝构造。
。Visual Studio 2022 在处理复杂场景时的 NRVO 优化表现更为激进,即使在条件判断和嵌套场景中,也能有效避免额外的临时对象和拷贝。

4. 赋值操作无法优化的原因

4.1 赋值操作的本质

赋值操作与对象构造不同,它修改已经存在的对象,因此不能像RVO或NRVO那样进行优化。赋值操作必须真正执行对象状态的复制,无法通过跳过拷贝来优化。

在 C++ 中,赋值操作是将一个对象的内容复制到另一个对象中(与赋值运算符重载相似)。这与对象的构造不同,因为在赋值操作时,目标对象已经存在,不能通过构造优化来避免对象的状态复制。

4.2 示例:

A aa1(10);
A aa2(20);
aa1 = aa2;  // 赋值操作

输出结果: 

A(int a) 构造函数被调用, _a = 10
A(int a) 构造函数被调用, _a = 20
A& operator=(const A& aa) 赋值运算符被调用
~A() 析构函数被调用
~A() 析构函数被调用

解释

  • 对象 aa1 和 aa2 分别通过构造函数创建。
  • 赋值操作需要实际复制 aa2 的数据到 aa1 中,因此必须调用赋值运算符。                                                

5. Visual Studio 2019 vs Visual Studio 2022 编译器优化差异

5.1 编译器的工作原理

编译器在优化过程中,使用了别名分析内存重用技术。在分析对象的使用模式后,编译器能够判断某些对象的拷贝是多余的,可以直接复用原始对象的内存地址。这种优化策略依赖于编译器对代码中对象生命周期的深层次分析。

5.2 为什么 VS2022 更加激进

VS2022 能够在更多复杂场景下进行优化,包括跨行优化、多层函数调用等。这是因为编译器能够更好地理解对象的生命周期,并通过对象生命周期分析来跳过冗余的拷贝操作。

两者比较示例:

A f4() {
    A a1(1);
    A a2(2);
    return a1;  // 返回局部变量
}

int main() {
    A a3 = f4();
    return 0;
}

VS2019输出结果: 

A(int a) 构造函数被调用, _a = 1
A(int a) 构造函数被调用, _a = 2
A(const A& aa) 拷贝构造函数被调用
~A() 析构函数被调用
~A() 析构函数被调用
~A() 析构函数被调用

在 VS2019 中,即使返回的是局部变量,仍会创建一个临时对象,然后通过拷贝构造将其传递给 a3。 

VS2022输出结果:

A(int a) 构造函数被调用, _a = 1
~A() 析构函数被调用

在 VS2022 中,编译器能够更好地分析对象生命周期,跳过了临时对象的创建,直接在 a3 的内存空间中构造返回的局部变量 a1。 

5.3 编译器的激进优化总结


。Visual Studio 2019 在大部分情况下能够启用 RVO 和 NRVO,但在某些复杂场景下仍需要额外的拷贝构造。
。Visual Studio 2022 的优化更加激进,通过更好的对象生命周期分析,能够避免更多不必要的拷贝操作,即使在复杂的函数调用和条件判断中,仍能高效地进行返回值优化。

6. 总结


通过本文,我们深入分析了 C++ 中编译器优化的几个重要方面,包括 返回值优化(RVO) 和 命名返回值优化(NRVO)。这些优化能够显著减少对象的拷贝构造和临时对象的创建,从而提升程序的执行效率。

。RVO 主要用于优化返回临时对象的场景,Visual Studio 2022 通过激进优化完全跳过了拷贝构造。
。NRVO 则用于优化返回命名局部变量的场景,Visual Studio 2019 和 2022 的 NRVO 实现基本一致,但 2022 的编译器在复杂场景中的表现更为出色。
在涉及对象赋值的场景中,由于目标对象已经存在,因此无法通过 RVONRVO 进行优化。

现代编译器已经能够通过 别名分析 和 对象生命周期分析 实现高度智能的优化。程序员不需要显式地进行优化,只需合理设计函数返回结构,编译器会自动帮助完成优化。

如果你希望了解更多编译器优化的底层机制,可以查阅 cppreference RVO文档 和 MSVC优化指南。

相信通过这篇文章你对C++类与对象高级部分的有了初步的了解。如果此篇文章对你学习C++有帮助,期待你的三连,你的支持就是我创作的动力!!!

下一篇文章再会.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/56818.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件设计模式------工厂方法模式

工厂方法模式&#xff08;Factory Method Pattern&#xff09;&#xff0c;又称工厂模式&#xff0c;也叫虚拟构造器模式&#xff08;Virtual Constructor Pattern&#xff09;或多态工厂模式&#xff08;Polymorphic Pactory Pattern&#xff09;,属于类创建型模式。 我们知道…

WIFI实现透传+接线图

单片机通过TX接WIFI模块的RX将设置的AT代码写入WIFI模块&#xff08;连接WIFI调为设备模式&#xff08;有设备&#xff0c;路由&#xff0c;双模等模式&#xff09;&#xff09; WIFI模块将响应信号通过TX通过CH340发给PC的RX 通过STC-ISP或安信可串口调试助手查看响应信息 …

Golang | Leetcode Golang题解之第495题提莫攻击

题目&#xff1a; 题解&#xff1a; func findPoisonedDuration(timeSeries []int, duration int) (ans int) {expired : 0for _, t : range timeSeries {if t > expired {ans duration} else {ans t duration - expired}expired t duration}return }

qt QGraphicsEffect详解

一、QGraphicsEffect概述 QGraphicsEffect通过挂接到渲染管道并在源&#xff08;例如QGraphicsPixmapItem、QWidget&#xff09;和目标设备&#xff08;例如QGraphicsView的视口&#xff09;之间进行操作来更改元素的外观。它允许开发者为图形项添加各种视觉效果&#xff0c;如…

Java网络编程-简单的API调用

Get请求 - 无参数 安装依赖库 首先需要安装一个库&#xff1a; Okhttp3&#xff0c;这是一个非常流行的 HTTP 库&#xff0c;可以简单、快速的实现 HTTP 调用。 安装 Okhttp3 的方式是在 pom.xml 文件中增加依赖&#xff1a; <!-- https://mvnrepository.com/artifact/co…

【算法】哈希表:49.字母异位词分组

目录 1、题目链接 2、题目介绍 3、解法 初始化设定--图解 步骤图解 4、代码 1、题目链接 49. 字母异位词分组 - 力扣&#xff08;LeetCode&#xff09; 2、题目介绍 3、解法 字母异位词的本质是字符相同但排列不同。因此&#xff0c;我们可以对字符串进行排序&#xf…

YOLOv8实战水果识别【数据集+YOLOv8模型+源码+PyQt5界面】

本文采用YOLOv8作为核心算法框架&#xff0c;结合PyQt5构建用户界面&#xff0c;使用Python3进行开发。YOLOv8以其高效的实时检测能力&#xff0c;在多个目标检测任务中展现出卓越性能。本研究针对水果数据集进行训练和优化&#xff0c;该数据集包含丰富的水果图像样本&#xf…

零基础Java第七期:方法的使用

一、方法的概念与使用 1.1. 方法的概念 方法就是一个代码片段. 类似于 C 语言中的 "函数"。方法存在的意义&#xff1a; 是能够模块化的组织代码(当代码规模比较复杂的时候)做到代码被重复使用, 一份代码可以在多个位置使用让代码更好理解更简单直接调用现有方法开…

Solidity基础语法

Solidity的在线编辑器&#xff1a;https://remix.ethereum.org/ 一、合约结构 1、SPDX许可标识&#xff1a;指定代码的开源许可 2、pragma指令&#xff1a;声明Solidity版本 3、导入语句&#xff1a;引入其他合约或库 4、合约声明&#xff1a;使用contract关键字 5、状态变量&…

直流和交流变频压缩机工作原理

直流变频压缩机工作原理&#xff1a; 压缩机定子产生旋转磁场与转子永磁磁场直接作用&#xff0c;实现压缩机运转。转子是永磁体&#xff0c;没有线圈/绕组&#xff0c;无需外部供电&#xff0c;不产生电能损耗&#xff0c;效率高、节能&#xff1b;直流变频压缩机属于同步控制…

uboot中mmc是使用

进入uboot的界面后 mmc命令 mmc list #查看有哪些可用的mmc设备 mmc dev 0 #切换到mmc的0设备&#xff0c;一般是指SD卡 ls mmc 0:1 #查看mmc 0设备&#xff08;sd卡&#xff09;中1分区保存的信息 ls mmc 0:2 #查看mmc 0设备&#xff08;sd卡&#xff09;中2分区保存的信…

Leetcode 1129. 颜色交替的最短路径

1.题目基本信息 1.1.题目描述 给定一个整数 n&#xff0c;即有向图中的节点数&#xff0c;其中节点标记为 0 到 n – 1。图中的每条边为红色或者蓝色&#xff0c;并且可能存在自环或平行边。 给定两个数组 redEdges 和 blueEdges&#xff0c;其中&#xff1a; redEdges[i] …

顺序表算法题【不一样的解法!】

本章概述 算法题1算法题2算法题3彩蛋时刻&#xff01;&#xff01;&#xff01; 算法题1 力扣&#xff1a;移除元素 我们先来看这个题目的要求描述&#xff1a; 把与val相同数值的元素移除掉&#xff0c;忽略元素的相对位置变化&#xff0c;然后返回剩下与val值不同的元素个数…

基于SpringBoot+Vue+uniapp的涪陵区特色农产品交易系统的详细设计和实现(源码+lw+部署文档+讲解等)

详细视频演示 请联系我获取更详细的视频演示 项目运行截图 技术框架 后端采用SpringBoot框架 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的开源框架。它采用约定大于配置的理念&#xff0c;提供了一套默认的配置&#xff0c;让开发者可以更专注于业务逻辑而不…

pytest中@pytest.fixture常用顺序function

ytest中pytest.fixture用法讲解 1、测试函数开始之前2、执行测试函数&#xff1a;3、测试函数结束后&#xff1a; 备注&#xff1a;内容来自chatGPT 在 pytest 中&#xff0c;pytest.fixture 是一个非常强大的功能&#xff0c;用于设置测试所需的环境和状态。它可以通过 scope…

AP上线的那些事儿(1)capwap建立过程、设备初始化以及二层上线

1、了解FITAP与AC的建立过程 之前我们已经知道了FATAP与FIT是一对双胞胎一样的兄弟&#xff0c;FAT哥哥能够直接独立使用当AP桥接、路由器等&#xff0c;而弟弟FIT则比较薄弱&#xff0c;独自发挥不出功效&#xff0c;需要一位师傅&#xff08;AC&#xff09;来带领&#xff0c…

ssm配置模式

新版 用Java类&#xff0c;全注解demo案例 1. AppConfig.java (Spring主配置类)package com.example.config;import org.springframework.context.annotation.ComponentScan; import org.springframework.context.annotation.Configuration; import org.springframework.cont…

MATLAB实现AM调制解调

1.基本概念 1.1 AM调制原理 调幅就是使载波的振幅随调制信号的变化规律而变化。基带信号m(t)与直流分量A0相加&#xff0c;然后和高频载波相乘实现AM信号的调制&#xff0c;如图1所示。 1.2 AM解调原理 AM信号经过信道传输&#xff0c;引入噪声后&#xff0c;再和载波相乘&…

OpenCV之换脸技术:一场面部识别的奇妙之旅

在这个数字化与智能化并进的时代&#xff0c;图像处理技术日益成为连接现实与虚拟世界的桥梁。其中&#xff0c;换脸技术作为一项颇受欢迎且富有挑战性的应用&#xff0c;不仅让人惊叹于技术的魔力&#xff0c;更在娱乐、影视制作等领域展现了无限可能。今天&#xff0c;我们就…

arp欺骗及其实验

ARP欺骗&#xff08;ARP Spoofing&#xff09;是一种网络攻击技术&#xff0c;攻击者通过伪造ARP&#xff08;地址解析协议&#xff09;消息&#xff0c;将其MAC地址与目标IP地址关联&#xff0c;从而实现对网络流量的截获、篡改或重定向。以下是ARP欺骗的详细信息&#xff1a;…