神经网络的基本骨架——nn.Module(torch.nn里的Containers模块里的Module类)

**前置知识:

nn:neural network神经网络

1、torch.nn:与神经网络有关的库

Containers:torch.nn中的一个模块

Module:所有神经网络模型的基础类(Base class for all neural network modules)

注意:任何自定义的模型都应该继承自 nn.Module,并实现 __init__forward 方法,以定义模型的结构和前向传播的逻辑

2、x=torch.tensor(1.0):将输入数据转为张量,因为模型期望收到张量(tensor)类型的输入

因为模型的操作(如加法、矩阵乘法等)都是在张量上进行的

张量可以简单理解为一种多维数组,用于表示数据

  • 标量(0维张量):一个单一的数字,比如 5

  • 向量(1维张量):一组数字,比如 [1, 2, 3],可以看作是一条线上的点

  • 矩阵(2维张量):一个数字的表格,比如[ [1, 2], [3, 4] ]

  • 更高维的张量(3维及以上):想象一下一个立方体,里面有许多数字,比如颜色的RGB值。更高维的张量可以表示更复杂的数据结构,比如视频帧、三维图像等

3、forward方法:如何由input计算得到output

forward和__call__的联系:

forward 是你定义的前向传播逻辑,用于计算输出的方法

__call__ 是一个特殊方法,用于使得模型实例可以像函数一样被调用,并负责调用 forward 以及处理其他一些功能

所以能让实例像函数一样被调用的实际上是__call__而不是forward

 **代码:

自定义新模型:

继承nn.Module基类——>重写__init__方法和forward方法

import torch
from torch import nnclass Xigua(nn.Module):def __init__(self):super().__init__()def forward(self,input):output=input+1return outputxigua1=Xigua() #先实例化新模型类,才能把它作为工具(一般有__call__方法的都这样做)
x=torch.tensor(1.0)
output=xigua1(x)
print(output)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/56067.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《Windows PE》5.2 遍历导出表

为了将程序读到内存指定位置,本节我们将讨论如何使用两种不同的方法遍历导出表。此外,我们还将给出一个打印进程调用kernel32中的API信息的示例程序。 本节必须掌握的知识点: 遍历导出表 打印kernel32 5.2.1 遍历导出表 ■方法一 实验三十四…

【Vue.js】vue2 项目在 Vscode 中使用 Ctrl + 鼠标左键跳转 @ 别名导入的 js 文件和 .vue 文件

js 文件跳转 需要安装插件 Vetur 然后需要我们在项目根目录下添加 jsconfig.json 配置,至于配置的作于,可以参考我的另外一篇博客: 【React 】react 创建项目配置 jsconfig.json 的作用 它主要用于配置 JavaScript 或 TypeScript 项目的根…

C++ | Leetcode C++题解之第475题供暖器

题目&#xff1a; 题解&#xff1a; class Solution { public:int findRadius(vector<int>& houses, vector<int>& heaters) {sort(houses.begin(), houses.end());sort(heaters.begin(), heaters.end());int ans 0;for (int i 0, j 0; i < houses.…

华为---MUX VLAN简介及示例配置

目录 1. 产生背景 2. 应用场景 3. 主要功能 4. 基本概念 5. 配置步骤及相关命令 6.示例配置 6.1 示例场景 6.2 网络拓扑图 6.3 配置代码 6.4 配置及解析 6.5 测试验证 配置注意事项 1. 产生背景 MUX VLAN&#xff08;Multiplex VLAN&#xff09;提供了一种通过VLA…

python xml的读取和写入

import xml.etree.ElementTree as ET from xml.dom import minidom# 读取XML文档 tree ET.parse("./xml_3/z_20240827_001.xml") root tree.getroot() # 获取size元素 size_find_0 root.find("size") # 获取width子元素 size_w size_find_0.find("…

InstructGPT的四阶段:预训练、有监督微调、奖励建模、强化学习涉及到的公式解读

1. 预训练 1. 语言建模目标函数&#xff08;公式1&#xff09;&#xff1a; L 1 ( U ) ∑ i log ⁡ P ( u i ∣ u i − k , … , u i − 1 ; Θ ) L_1(\mathcal{U}) \sum_{i} \log P(u_i \mid u_{i-k}, \dots, u_{i-1}; \Theta) L1​(U)i∑​logP(ui​∣ui−k​,…,ui−1​;Θ…

C++和OpenGL实现3D游戏编程【连载15】——着色器初步

&#x1f525;C和OpenGL实现3D游戏编程【目录】 1、本节实现的内容 上一节我们介绍了通过VBO、VAO和EBO怎样将顶点发送到GPU显存&#xff0c;利用GPU与显存之间的高效处理速度&#xff0c;来提高我们的图形渲染效率。那么在此过程中&#xff0c;我们又可以通过着色器&#xff…

硬件开发笔记(三十一):TPS54331电源设计(四):PCB布板12V转5V电路、12V转3.0V和12V转4V电路

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/142757509 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…

《OpenCV计算机视觉》—— 人脸检测

文章目录 一、人脸检测流程介绍二、用于人脸检测的关键方法1.加载分类器&#xff08;cv2.CascadeClassifier()&#xff09;2.检测图像中的人脸&#xff08;cv2.CascadeClassifier.detectMultiscale()&#xff09; 三、代码实现 一、人脸检测流程介绍 下面是一张含有多个人脸的…

人工智能和机器学习之线性代数(一)

人工智能和机器学习之线性代数&#xff08;一&#xff09; 人工智能和机器学习之线性代数一将介绍向量和矩阵的基础知识以及开源的机器学习框架PyTorch。 文章目录 人工智能和机器学习之线性代数&#xff08;一&#xff09;基本定义标量&#xff08;Scalar&#xff09;向量&a…

【硬件模块】HC-08蓝牙模块

蓝牙模块型号 HC-08蓝牙模块实物图 HC-08蓝牙模块引脚介绍 STATE&#xff1a;状态输出引脚。未连接时&#xff0c;则为低电平。连接成功时&#xff0c;则为高电平。可以在程序中作指示引脚使用&#xff1b; RXD&#xff1a;串口接收引脚。接单片机的 TX 引脚&#xff08;如…

大厂面试真题-说说AtomicInteger 线程安全原理

基础原子类&#xff08;以 AtomicInteger 为例&#xff09;主要通过 CAS 自旋 volatile 相结合的方案实现&#xff0c;既保障了 变量操作的线程安全性&#xff0c;又避免了 synchronized 重量级锁的高开销&#xff0c;使得 Java 程序的执行效率大为 提升。 CAS 用于保障变量…

Linux编辑器-vim的配置及其使用

vim是一种多模式的编辑器&#xff1a; 1.命令模式&#xff08;默认模式&#xff09;&#xff1a;用户所有的输入都会当作命令&#xff0c;不会当作文本输入。 2.插入模式&#xff1a;写代码&#xff0c; 按「 i 」切换进入插入模式「 insert mode 」&#xff0c;按 “i” 进入…

04. prometheus 监控 Windows 服务器

prometheus 监控 Windows 服务器 1. 下载安装 Windows_exporter 安装包下载&#xff1a;https://github.com/prometheus-community/windows_exporter/releases 下载 msi 版本&#xff0c;上传至要监控的 Windows 服务器&#xff0c;双击安装即可&#xff0c;exporter 会自动…

SCI论文快速排版:word模板一键复制样式和格式【重制版】

关注B站可以观看更多实战教学视频&#xff1a;hallo128的个人空间SCI论文快速排版&#xff1a;word模板一键复制样式和格式&#xff1a;视频操作视频重置版2【推荐】 SCI论文快速排版&#xff1a;word模板一键复制样式和格式【重制版】 模板与普通文档的区别 为了让读者更好地…

npm 配置淘宝镜像

为了加速 npm 包的下载速度&#xff0c;尤其是在中国地区&#xff0c;配置淘宝的 npm 镜像&#xff08;也称为 cnpm 镜像&#xff09;是一个常见的方法。以下是如何配置淘宝 npm 镜像的步骤&#xff1a; 1. 使用 npm 命令配置镜像 你可以直接使用 npm 命令来设置淘宝的 npm 镜…

【C++贪心 DFS】2673. 使二叉树所有路径值相等的最小代价|1917

本文涉及知识点 C贪心 反证法 决策包容性 CDFS LeetCode2673. 使二叉树所有路径值相等的最小代价 给你一个整数 n 表示一棵 满二叉树 里面节点的数目&#xff0c;节点编号从 1 到 n 。根节点编号为 1 &#xff0c;树中每个非叶子节点 i 都有两个孩子&#xff0c;分别是左孩子…

苹果最新论文:LLM只是复杂的模式匹配 而不是真正的逻辑推理

大语言模型真的可以推理吗&#xff1f;LLM 都是“参数匹配大师”&#xff1f;苹果研究员质疑 LLM 推理能力&#xff0c;称其“不堪一击”&#xff01;苹果的研究员 Mehrdad Farajtabar 等人最近发表了一篇论文&#xff0c;对大型语言模型 &#xff08;LLM&#xff09; 的推理能…

【Coroutines】Implement Lua Coroutine by Kotlin - 2

Last Chapter Link 文章目录 Symmetric CoroutinesNon-Symmetric Coroutine SampleSymmetric Coroutine SampleHow to Implement Symmetric CoroutinesWonderful TricksCode DesignTail Recursion OptimizationFull Sources Symmetric Coroutines in last blog, we have talk…

linux中软连接和硬链接的区别

定义与概念 硬链接&#xff08;Hard Link&#xff09;&#xff1a;硬链接是文件系统中的一个概念&#xff0c;它直接指向文件系统中的物理数据块。可以把硬链接看作是原始文件的一个别名&#xff0c;它们共享相同的inode&#xff08;索引节点&#xff09;编号。在Linux文件系统…