R语言手工实现主成分分析 PCA | 奇异值分解(svd) 与PCA | PCA的疑问和解答

几个问题:

  • pca可以用相关系数矩阵做吗?效果比协方差矩阵比怎么样?
  • pca做完后变量和样本的新坐标怎么旋转获得?
  • pca做不做scale和center对结果有影响吗?
  • pca用因子分解和奇异值分解有啥区别?后者怎么获得变量和样本的新坐标?

1. 用R全手工实现 PCA(对比 prcomp() )

不借助包,按照 《机器学习实战》P246的伪代码进行操作.

1减去列平均数
2计算协方差矩阵
3计算协方差矩阵的特征值和特征向量
4将特征值从大到小排列
5保留最上面的N个特征值
6将数据转换到上述N个特征向量构建的新空间中。

例1: 针对iris数据集

head(iris)
df1=iris[,1:4]
#1) 减去平均值
df1=sweep(x=df1, MARGIN=2, STATS=apply(df1, 2, mean),FUN="-")
head(df1)
#2) 计算协方差矩阵
cor.df1=cov(df1)
#3) 计算协方差矩阵的特征值和特征向量
eigen.df1=eigen(cor.df1)
#4) 特征值默认降序
eigen.df1
#5) 保留最前面的几个特征值
#6) 原center后的坐标 * 旋转矩阵
coord.df1=as.matrix(df1) %*% eigen.df1$vectors
dim(coord.df1)
head(coord.df1)
# plot
coord.df1_=as.data.frame(coord.df1)
colnames(coord.df1_)=paste0("PC_", 1:4)
coord.df1_$type=iris$Species
library(ggplot2)
ggplot(coord.df1_, aes(PC_1, PC_2, color=type))+geom_point()# prcomp() 做PCA
pca.iris=prcomp(iris[,1:4])
pca.iris# 对比旋转矩阵
> pca.iris$rotation #prcomp()的计算结果PC1         PC2         PC3        PC4
Sepal.Length  0.36138659 -0.65658877  0.58202985  0.3154872
Sepal.Width  -0.08452251 -0.73016143 -0.59791083 -0.3197231
Petal.Length  0.85667061  0.17337266 -0.07623608 -0.4798390
Petal.Width   0.35828920  0.07548102 -0.54583143  0.7536574> eigen.df1$vectors #协方差矩阵的特征向量构成的矩阵[,1]        [,2]        [,3]       [,4]
[1,]  0.36138659 -0.65658877 -0.58202985  0.3154872
[2,] -0.08452251 -0.73016143  0.59791083 -0.3197231
[3,]  0.85667061  0.17337266  0.07623608 -0.4798390
[4,]  0.35828920  0.07548102  0.54583143  0.7536574# 对比方差
# 主成分的标准差,文档说是 协方差矩阵的特征值的平方根,虽然是通过SVD分解实现的
# square roots of the eigenvalues of the covariance/correlation matrix
# though the calculation is actually done with the singular values of the data matrix
> pca.iris$sdev
[1] 2.0562689 0.4926162 0.2796596 0.1543862> eigen.df1$values #特征根
[1] 4.22824171 0.24267075 0.07820950 0.02383509#开方后确实等于 pca.iris$sdev
> sqrt(eigen.df1$values)
[1] 2.0562689 0.4926162 0.2796596 0.1543862

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/55971.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【网络安全】CVE-2024-46990: Directus环回IP过滤器绕过实现SSRF

未经许可,不得转载。 文章目录 背景漏洞详情受影响版本解决方案背景 Directus 是一款开源 CMS,提供强大的内容管理 API,使开发人员能够轻松创建自定义应用程序,凭借其灵活的数据模型和用户友好的界面备受欢迎。然而,Directus 存在一个漏洞,允许攻击者绕过默认的环回 IP …

使用libssh2上传下载文件及Makefile编写

使用libssh2上传下载文件及Makefile编写 一、准备工作二、上传和下载文件三、编写Makefilelibssh2是一个开源的SSH库,用于在C/C++程序中实现SSH2协议的功能。通过libssh2,我们可以方便地进行远程登录、执行命令、上传和下载文件等操作。本文将详细介绍如何使用libssh2库上传和…

Django发送邮件代理服务器配置

根路由下配置 MAIL_BACKEND django.core.mail.backends.smtp.EmailBackend EMAIL_HOST smtp.qq.com EMAIL_HOST_USER 66897079qq.com EMAIL_HOST_PASSWORD aavlzhzvqorbcahcEMAIL_PORT 465 EMAIL_USE_SSL True发送邮件 message "<p>尊敬的用户您好&#xff…

《基于FreeRTOS的STM32超声波智能避障平衡小车,实现了小车的自平衡、超声波避障以及通过智能手机远程控制的功能》+源代码+文献资料+文档说明

文章目录 源代码下载地址项目介绍项目整体框架环境数据采集进程MPU6050简介如何获得这些数据&#xff1f;配置管脚 MPU6050的eMPL库MPU6050宏定义 小车PID控制进程电机的分类MC3386电机驱动芯片管脚配置 正交码盘与STM32正交编码器管脚配置 超声波测距模块HC-SR04超声波测距模块…

#444到1092

测试同学反馈根据id&#xff08;整形&#xff09;查询输入#444查询时返回了id1092数据。     一个很简单的查询操作&#xff0c;怎么会出现这么无厘头的结果。看了下代码就是简单的等值查询&#xff0c;后端用Long进行接收。然后看请求日志&#xff0c;日志记录id1092&#x…

【网易云音乐】--源代码分享

最近写了一个网易云音乐的音乐实现部分&#xff0c;是通过JavaScript和jQuery实现的&#xff0c;具体效果大家可以参照下面的视频 源代码分享 - git地址: 网易云音乐源代码 下面将着重讲解一下音乐实现部分 视频有点模糊&#xff0c;不好意思&#xff0c;在b站上添加视频的时候…

全能PDF工具集 | PDF Shaper Ultimate v14.6 便携版

软件简介 PDF Shaper是一款功能强大的PDF工具集&#xff0c;它提供了一系列用于处理PDF文档的工具。这款软件使用户能够轻松地转换、分割、合并、提取页面以及旋转和加密PDF文件。PDF Shaper的界面简洁直观&#xff0c;使得即使是新手用户也能快速上手。它支持广泛的功能&…

基于Nodemcu的手机控制小车

基于Nodemcu的手机控制小车 一、项目说明二、项目材料三、代码与电路设计四、轮子和车体五、电路连接六、使用方法 一、项目说明 嗨&#xff0c;机器人项目制造者们&#xff01;在这个项目中&#xff0c;我制作了这辆简单但快速的遥控车&#xff0c;它可以通过智能手机控制&am…

yum仓库安装rabbitmq

yum仓库安装rabbitmq 1、配置yum仓库 vim /etc/yum.repos.d/rabbitmq.repo # In /etc/yum.repos.d/rabbitmq.repo## ## Zero dependency Erlang ##[rabbitmq_erlang] namerabbitmq_erlang baseurlhttps://packagecloud.io/rabbitmq/erlang/el/7/$basearch repo_gpgcheck1 gpg…

智能生成ppt软件哪个好?如何高效生成ppt?

想要快速制作出专业且吸引人的PPT演示文稿吗&#xff1f;ai智能生成ppt工具可以帮你实现这一目标。 无需复杂的设计技巧&#xff0c;也不必花费大量时间&#xff0c;只需几个简单的步骤&#xff0c;就能创造出令人印象深刻的演示文稿。下面是一份免费版教程&#xff0c;让你轻…

PyCharm+ssh跳板机+服务器

PyCharmssh跳板机服务器 文章目录 PyCharmssh跳板机服务器准备工作登录服务器查看CUDA查看conda创建虚拟环境 前言配置ssh免密登录设置ssh隧道配置pycharm测试第一种第二种 服务器空闲查询传输数据 准备工作 登录服务器 直接ssh连接就行,在终端(命令行)直接输入下面命令: 跳…

K8s-services+pod详解1

一、Service 我们能够利用Deployment创建一组Pod来提供具有高可用性的服务。 虽然每个Pod都会分配一个单独的Pod IP&#xff0c;然而却存在如下两问题&#xff1a; Pod IP 会随着Pod的重建产生变化Pod IP 仅仅是集群内可见的虚拟IP&#xff0c;外部无法访问 这样对于访问这…

基于Python Django的在线考试管理系统

&#x1f34a;作者&#xff1a;计算机毕设匠心工作室 &#x1f34a;简介&#xff1a;毕业后就一直专业从事计算机软件程序开发&#xff0c;至今也有8年工作经验。擅长Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等。 擅长&#xff1a;按照需求定制化开发项目…

线程基础学习

线程的实现 通过实现Runnable接口的方式&#xff0c;实现其中的run方法。继承Thread类&#xff0c;然后重写其中的run方法。通过线程池创建线程&#xff0c;默认采用DefaultThreadFactory。有返回值的callable&#xff0c;实现callable接口&#xff0c;实行call方法。 本质上…

Linux 用户和用户组管理详解

文章目录 Linux 用户和用户组管理详解用户和用户组概念 添加和删除用户添加用户删除用户 用户组管理添加用户组删除用户组将用户加入用户组 禁用和启用用户临时禁用用户恢复用户 显示用户和组信息高级用户管理批量删除组内用户配置 sudo 权限 用户和用户组的配置文件用户的 UID…

【Linux-基础IO】软硬链接+动静态库

一、软硬链接 见一见 软连接 硬连接 通过观察我们发现以下几点&#xff1a; 1.ll - i后&#xff0c;软连接形成的文件有指向&#xff0c;并且软连接的Inode编号与对应文件的Inode编号不一样 2.ll - i后&#xff0c;硬连接形成的文件与对应的文件Inode编号一样 3.软连接…

大佬,简单解释下“嵌入式软件开发”和“嵌入式硬件开发”的区别

在开始前刚好我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「嵌入式的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#xff01;首先&#xff0c;嵌入式硬…

初识数据结构--时间复杂度 和 空间复杂度

数据结构前言 数据结构 数据结构是计算机存储、组织数据的方式(指不仅能存储数据&#xff0c;还能够管理数据-->增删改)。指相互之间存在一种或多种特定关系的数据元素的集合。没有单一的数据结构对所有用途都有用&#xff0c;所以我们要学习各种的数据结构&#xff0c;比…

visual studio使用ssh连接linux虚拟机运行程序

1.vs安装linux组件 2.安装后新建项目 新建后会有一个使用指南 设置网络为桥接网卡后打开虚拟机 使用vs提升的那句话安装工具 sudo apt-get install openssh-server g gdb gdbserver 重启ssh服务 sudo service ssh restart 接着进去打开ssh端口 sudo vi /etc/ssh/sshd_config …

5-容器管理工具Docker

├──5-容器管理工具Docker | ├──1-容器管理工具Docker | | ├──1-应用部署容器化演进之路 | | ├──2-容器技术涉及Linux内核关键技术 | | ├──3-Docker生态架构及部署 | | ├──4-使用容器运行Nginx及docker命令介绍 | | ├──5-容器镜像介…