图论day56|广度优先搜索理论基础 、bfs与dfs的对比(思维导图)、 99.岛屿数量(卡码网)、100.岛屿的最大面积(卡码网)

图论day56|广度优先搜索理论基础 、bfs与dfs的对比(思维导图)、 99.岛屿数量(卡码网)、100.岛屿的最大面积(卡码网))

    • 广度优先搜索理论基础
      • bfs与dfs的对比(思维导图):
    • 99.岛屿数量(卡码网)
      • 1.深搜法
      • 2.广搜法
    • 100.岛屿的最大面积(卡码网)

广度优先搜索理论基础

  • 应用场景:

    • 适合于解决两个点之间的最短路径问题
    • 不涉及具体的遍历方式,深搜和广搜都可以
  • 广搜(bfs)的过程:

    图二

  • 代码框架:

int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 表示四个方向
// grid 是地图,也就是一个二维数组
// visited标记访问过的节点,不要重复访问
// x,y 表示开始搜索节点的下标
void bfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y) {queue<pair<int, int>> que; // 定义队列que.push({x, y}); // 起始节点加入队列visited[x][y] = true; // 只要加入队列,立刻标记为访问过的节点while(!que.empty()) { // 开始遍历队列里的元素pair<int ,int> cur = que.front(); que.pop(); // 从队列取元素int curx = cur.first;int cury = cur.second; // 当前节点坐标for (int i = 0; i < 4; i++) { // 开始想当前节点的四个方向左右上下去遍历int nextx = curx + dir[i][0];int nexty = cury + dir[i][1]; // 获取周边四个方向的坐标if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;  // 坐标越界了,直接跳过if (!visited[nextx][nexty]) { // 如果节点没被访问过que.push({nextx, nexty});  // 队列添加该节点为下一轮要遍历的节点visited[nextx][nexty] = true; // 只要加入队列立刻标记,避免重复访问}}}}

要素:

  • 表示方向的二维数组
  • 表示地图的二维数组
  • 表示是否访问的二维数组
  • 坐标的数据类型
  • 能存储坐标的队列
  • 当前结点(curx,cury)和下一个结点坐标(nextx,nexty)

代码思路:将起始点存入队列并获取当前元素,再根据当前元素获取下一个元素,并存入队列

(以上主要摘自代码随想录)

bfs与dfs的对比(思维导图):

在这里插入图片描述

99.岛屿数量(卡码网)

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。

后续 N 行,每行包含 M 个数字,数字为 1 或者 0。

输出描述

输出一个整数,表示岛屿的数量。如果不存在岛屿,则输出 0。

输入示例

4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

输出示例

3

提示信息

img

根据测试案例中所展示,岛屿数量共有 3 个,所以输出 3。

数据范围:

1 <= N, M <= 50

1.深搜法

#include <iostream>
#include <vector>
using namespace std;int dir[4][2]={0, 1, 1, 0, -1, 0, 0, -1};void dfs(const vector<vector<int>> &grid,vector<vector<bool>> &visited,int x,int y)
{if(grid[x][y]==0||visited[x][y])return;visited[x][y]=true;for(int i=0;i<4;i++){int nextx=x+dir[i][0];int nexty=y+dir[i][1];if(nextx<=0||nextx>=grid.size()||nexty<=0||nexty>=grid[1].size())continue;dfs(grid,visited,nextx,nexty);}
}int main()
{int n,m;cin>>n>>m;vector<vector<int>> grid(n+1,vector<int>(m+1,0));for(int i=1;i<=n;i++)for(int j=1;j<=m;j++){cin>>grid[i][j];}vector<vector<bool>> visited(n+1,vector<bool>(m+1,false));int result=0;for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)if(grid[i][j]==1&&!visited[i][j]){result++;dfs(grid,visited,i,j);}cout<<result<<endl;return 0;
}

2.广搜法

#include <iostream>
#include <vector>
#include <queue>
using namespace std;int dir[4][2]={1,0,-1,0,0,1,0,-1};
void bfs(vector<vector<int>> grid,vector<vector<bool>>& visited,int x,int y)
{queue<pair<int,int>> que;que.push({x,y});visited[x][y]=true;while(!que.empty()){pair<int,int> cur=que.front();que.pop();int curx=cur.first;int cury=cur.second;for(int i=0;i<4;i++){int nextx=curx+dir[i][0];int nexty=cury+dir[i][1];if(nextx<=0||nextx>=grid.size()||nexty<=0||nexty>=grid[1].size())continue;if(grid[nextx][nexty]==1&&visited[nextx][nexty]==false){que.push({nextx,nexty});visited[nextx][nexty]=true;}}}
}int main()
{int n,m;cin>>n>>m;vector<vector<int>> grid(n+1,vector<int>(m+1,0));for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)cin>>grid[i][j];vector<vector<bool>> visited(n+1,vector<bool>(m+1,false));int result=0;for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)if(visited[i][j]==false&&grid[i][j]==1){result++;bfs(grid,visited,i,j);}cout<<result<<endl;
}

分析思路如下:

在这里插入图片描述

100.岛屿的最大面积(卡码网)

题目描述

给定一个由 1(陆地)和 0(水)组成的矩阵,计算岛屿的最大面积。岛屿面积的计算方式为组成岛屿的陆地的总数。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。

输入描述

第一行包含两个整数 N, M,表示矩阵的行数和列数。后续 N 行,每行包含 M 个数字,数字为 1 或者 0,表示岛屿的单元格。

输出描述

输出一个整数,表示岛屿的最大面积。如果不存在岛屿,则输出 0。

输入示例

4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

输出示例

4

提示信息

img

样例输入中,岛屿的最大面积为 4。

数据范围:

1 <= M, N <= 50。

#include <iostream>
#include <vector>
#include <queue>
using namespace std;int dir[4][2]={1,0,-1,0,0,1,0,-1};
void bfs(vector<vector<int>> grid,vector<vector<bool>> &visited,int x,int y,int &area)
{queue<pair<int,int>> que;que.push({x,y});visited[x][y]=true;area++;while(!que.empty()){pair<int,int> cur=que.front();que.pop();int curx=cur.first;int cury=cur.second;for(int i=0;i<4;i++){int nextx=curx+dir[i][0];int nexty=cury+dir[i][1];if(nextx<=0||nextx>=grid.size()||nexty<=0||nexty>=grid[1].size())continue;if(grid[nextx][nexty]==1&&visited[nextx][nexty]==false){que.push({nextx,nexty});visited[nextx][nexty]=true;area++;}}}
}int main()
{int n,m;cin>>n>>m;vector<vector<int>> grid(n+1,vector<int>(m+1,0));for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)cin>>grid[i][j];vector<vector<bool>> visited(n+1,vector<bool>(m+1,false));int maxArea=0;for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)if(visited[i][j]==false&&grid[i][j]==1){int area=0;bfs(grid,visited,i,j,area);maxArea=max(maxArea,area);}cout<<maxArea<<endl;
}

在99题的基础上加一个area即可,基本没有难度

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/55790.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

音视频入门基础:FLV专题(12)——FFmpeg源码中,解析DOUBLE类型的ScriptDataValue的实现

一、引言 从《音视频入门基础&#xff1a;FLV专题&#xff08;9&#xff09;——Script Tag简介》中可以知道&#xff0c;根据《video_file_format_spec_v10_1.pdf》第80到81页&#xff0c;SCRIPTDATAVALUE类型由一个8位&#xff08;1字节&#xff09;的Type和一个ScriptDataV…

电影选票选座系统|影院购票|电影院订票选座小程序|基于微信小程序的电影院购票系统设计与实现(源码+数据库+文档)

电影院订票选座小程序 目录 基于微信小程序的电影院购票系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户功能实现 2、管理员功能实现 &#xff08;1&#xff09;影院信息管理 &#xff08;2&#xff09;电影信息管理 &#xff08;3&#xff09;已完成…

VUE 开发——Vue学习(二)

一、watch侦听器 作用&#xff1a;监视数据变化&#xff0c;执行一些业务逻辑或异步操作 简单写法 <div id"app"><textarea v-model"words"></textarea></div><script>const app new Vue({el:#app,data: {words: },watch…

在北京能不能设计一款可以多屏展示的调度桌

在北京这座科技与创新并蓄的国际大都市&#xff0c;设计一款集高效、智能与多屏展示功能于一体的调度桌&#xff0c;不仅是一个技术挑战&#xff0c;更是对未来工作场景的一次深刻探索与重塑。那么&#xff0c;在北京能不能设计一款可以多屏展示的调度桌呢? 随着信息技术的飞速…

AI产品经理指南:我是谁,从哪来,到哪去|对谈字节AI产品负责人Vanessa,面试了100位AI产品经理后的心得总结

AI 正在改变各行各业&#xff0c;或许首当其冲受到影响的就包括离 AI 最近的一群人——产品经理。 Vanessa 在字节负责 AI 产品工作&#xff0c;我们从「面试了 100 位 AI 产品经理」的心得总结开始&#xff0c;聊了聊究竟什么是「AI 产品经理」&#xff1f;Vanessa资深的产品经…

QT元对象系统特性详细介绍(信号槽、类型信息、动态设置属性)(注释)

目录 一、元对象系统简介 二、信号和槽 三、类型信息 四、动态设置属性 一、元对象系统简介 QT中的元对象系统Q_OBJECT并不是C标准代码&#xff0c;因此在使用时需要QT的MOC&#xff08;元对象编译器&#xff09;进行预处理&#xff0c;MOC会在编译时期读取C代码中的特定宏…

java反序列化之CommonCollections6利⽤链的学习

一、源起 前文学习CC1链和URLDNS链的学习&#xff0c;同时学习过程中知道cc1受jdk版本的限制&#xff0c;故而进一步分析cc6链的利用过程&#xff0c;这个利用链不受jdk版本的限制&#xff0c;只要commons collections小于等于3.2.1&#xff0c;都存在这个漏洞。 ps&#xff1…

SpringBoot中间件Docker

Docker&#xff08;属于C/S架构软件&#xff09; 简介与概述 1.Docker 是一个开源的应用容器引擎&#xff0c;基于 Go 语言 并遵从 Apache2.0 协议开源。 Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中&#xff0c;然后发布到任何流行的 Linux …

【ubuntu】Ubuntu20.04安装中文百度输入法

1.download 百度Linux输入法-支持全拼、双拼、五笔 2.unzip unzip Ubuntu_Deepin-fcitx-baidupinyin-64.zip 3.setting 3.1 setting fcitx sudo apt install aptitude sudo aptitude install fcitx-bin fcitx-table fcitx-config-gtk fcitx-frontend-all sudo aptitude in…

Cocos_鼠标滚轮放缩地图

文章目录 前言一、环境二、版本一_code2.分析类属性方法详细分析详细分析onLoad()onMouseWheel(event)详细分析 总结 前言 学习笔记&#xff0c;请多多斧正。 一、环境 通过精灵rect放置脚本实现鼠标滚轮放缩地图。 二、版本一_code import { _decorator, Component, Node }…

使用Buildpacks构建Docker镜像

## 使用Buildpacks构建Docker镜像 ![](../assets/运维手册-Buildpacks-Buildpacks.io.png) ### Buildpacks简介 与Dockerfile相比&#xff0c;Buildpacks为构建应用程序提供了更高层次的抽象。具体来说&#xff0c;Buildpacks&#xff1a; * 提供一个平衡的控制&#xff0c;…

【Python】Conda离线执行命令

以下链接证明了想要离线使用conda命令的方法 启用离线模式 — Anaconda documentation 基本上大部分的命令都会提供网络选项 例如creat命令 conda create — conda 24.7.1 文档 - Conda 文档

多区域OSPF路由协议

前言 之前也有过关于OSPF路由协议的博客&#xff0c;但都不是很满意&#xff0c;不是很完整。现在也是听老师讲解完OSPF路由协议&#xff0c;感触良多&#xff0c;所以这里重新整理一遍。这次应该是会满意的 一些相关概念 链路状态 链路指路由器上的一个接口&#xff0c;链路状…

毕设分享 基于协同过滤的电影推荐系统

文章目录 0 简介1 设计概要2 课题背景和目的3 协同过滤算法原理3.1 基于用户的协同过滤推荐算法实现原理3.1.1 步骤13.1.2 步骤23.1.3 步骤33.1.4 步骤4 4 系统实现4.1 开发环境4.2 系统功能描述4.3 系统数据流程4.3.1 用户端数据流程4.3.2 管理员端数据流程 4.4 系统功能设计 …

信息安全工程师(28)机房安全分析与防护

前言 机房安全分析与防护是一个复杂而细致的过程&#xff0c;涉及到物理安全、环境控制、电力供应、数据安全、设备管理、人员管理以及紧急预案等多个方面。 一、机房安全分析 1. 物理安全威胁 非法入侵&#xff1a;未经授权的人员可能通过门窗、通风口等进入机房&#xff0c;…

【LeetCode】每日一题 2024_10_10 优质数对的总数 I(暴力/哈希)

前言 每天和你一起刷 LeetCode 每日一题~ LeetCode 启动&#xff01; 题目&#xff1a;优质数对的总数 I 代码与解题思路 简单题先暴力~ 直接对着题意模拟即可&#xff0c;力扣上只要是标着简单标签的题目&#xff0c;不用犹豫&#xff0c;直接对他使用暴力吧&#xff01; …

LabVIEW混合控制器质量检测

随着工业自动化水平的提高&#xff0c;对控制器的精度、稳定性、可靠性要求也在不断上升。特别是在工程机械、自动化生产、风力发电等领域&#xff0c;传统的质量检测方法已无法满足现代工业的高要求。因此&#xff0c;开发一套自动化、精确、可扩展的混合控制器质量检测平台成…

Pikachu-Cross-Site Scripting-xss盲打

xss盲打&#xff0c;不是一种漏洞类型&#xff0c;而是一个攻击场景&#xff1b;在前端、或者在当前页面是看不到攻击结果&#xff1b;而是在后端、在别的页面才看到结果。 登陆后台&#xff0c;查看结果&#xff1b;

Extreme Compression of Large Language Models via Additive Quantization阅读

文章目录 Abstract1. Introduction2. Background & Related Work2.1. LLM量化2.2. 最近邻搜索的量化 3.AQLM:Additive Quantization for LLMs3.1. 概述3.1.0 补充**步骤说明****举例说明** 3.2. 阶段1&#xff1a;代码的波束搜索3.3. 阶段2&#xff1a;码本更新3.4. 阶段3&…

Qt Creator 通过python解释器调用*.py

全是看了大佬们的帖子&#xff0c;结合chatGPT才揉出来。在此做个记录。 安装python在Qt Creator *.pro 文件中配置好环境来个简单的example.py调用代码安装pip添加opencv等库调用包含了opencv库的py代码成功 *.pro配置&#xff1a; INCLUDEPATH C:\Users\xuanm\AppData\Lo…