一区黏菌算法+双向深度学习+注意力机制!SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

一区黏菌算法+双向深度学习+注意力机制!SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

目录

    • 一区黏菌算法+双向深度学习+注意力机制!SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;

2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;

3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;

4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

5.适用对象:大学生课程设计、期末大作业和毕业设计。
在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复一区黏菌算法+双向深度学习+注意力机制!SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测Matlab)。

%%  划分数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1, :), 1, kim * or_dim), result(i + kim + zim - 1, :)];
end%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';%%  参数设置
fun = @getObjValue;    % 目标函数
dim = 2;               % 优化参数个数
lb  = [0.1, 0.1];      % 优化参数目标下限
ub  = [ 800,  800];    % 优化参数目标上限
pop = 20;              % 种群数量
Max_iteration = 30;    % 最大迭代次数   %%  优化算法
[Best_score,Best_pos, curve] = SSA(pop, Max_iteration, lb, ub, dim, fun); %%  获取最优参数
bestc = Best_pos(1, 1);  
bestg = Best_pos(1, 2); 

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/54967.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探索机器人快换盘技术的未来之路:智能化与协作的革新

在当今快速发展的科技时代,机器人已成为众多领域不可或缺的得力助手。其中,机器人快换盘技术作为提升机器人灵活性和应用广度的重要技术,正经历着前所未有的变革与创新。下面请随我们一起深入探讨这一技术的未来发展趋势。 一、人工智能&…

<<迷雾>> 第 4 章 电子计算机发明的前夜 示例电路

莫尔斯电报示意图 info::操作说明 鼠标单击开关切换开合状态 通电后, 线圈产生磁力从而将铁片开关(衔铁臂)吸引下来 primary::在线交互操作链接 https://cc.xiaogd.net/?startCircuitLinkhttps://book.xiaogd.net/cyjsjdmw-examples/assets/circuit/cyjsjdmw-ch04-01-morse-te…

Shopline对接需要注意的问题

Shopline对接是一项复杂而细致的工作,为了确保对接的顺利进行,并保证系统的稳定性和可靠性,需要注意以下几个方面。 1.API文档的详细阅读 功能理解: 仔细阅读Shopline提供的API文档,全面了解每个接口的功能、参数、返…

初始docker以及docker的基本使用!!!

文章目录 虚拟化技术Docker/podman 命令通用命令查看docker 当前版本管理docker运行 镜像操作[image]列出本地所有镜像拉取镜像删除镜像把docker中的镜像打包成文件把镜像文件加载到docker中上传镜像 容器操作[container]创建容器docker run的参数选项列出所有容器启动容器停止…

安防区域保护:无线电干扰设备技术详解

在安防区域保护中,无线电干扰设备技术扮演着重要角色,它主要用于通过发射特定频率的无线电波来干扰无人机或其他无线电设备的通信链路、导航信号或控制信号,以达到削弱、阻断甚至控制这些设备运行的目的。以下是对无线电干扰设备技术的详细解…

【GAN】生成对抗网络Generative Adversarial Networks理解摘要

【Pytorch】生成对抗网络实战_pytorch生成对抗网络-CSDN博客 【损失函数】KL散度与交叉熵理解-CSDN博客 [1406.2661] Generative Adversarial Networks (arxiv.org) GAN本质是对抗或者说竞争,通过生成器和鉴别器的竞争获取有效地结果,换句话说&#xff0…

每日一练 2024.9.29(2)

目录 解题思路与代码实现 题目分析 一、解题策略 关键步骤: 二、代码实现 三、代码解析 四、复杂度分析 五、运行示例 示例1: 示例2: 六、总结 解题思路与代码实现 题目分析 这道题目要求我们找到字符串列表 strs 中的相似字符组…

C++——vector

1.简介 2.成员函数 2.1构造函数 void test_vector1() {//1.无参构造vector<int> v1;cout << v1.capacity() << endl;//2.传参构造vector<int> v2(10,1);//3.迭代器构造vector<int> v3(v2.begin(), v2.end());//也可以使用其它容器的迭代器区间来…

scrapy快速上手

安装 除了scrapy本身还要安装两个库 pip install scrapy pip install pywin32 pip install wheel 创建项目 在要创建项目的地方打开powershell scrapy startproject 项目名 我们得到这样的项目结构&#xff0c;功能如下 scrapy.cfg 项目的主配置信息 …

LeetCode[中等] 17. 电话号码的字母组合

给定一个仅包含数字 2-9 的字符串&#xff0c;返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下&#xff08;与电话按键相同&#xff09;。注意 1 不对应任何字母。 思路 回溯法 log&#xff1a;当前结果数组&#xff1b;level&#xff1a…

第五届计算机科学与管理科技国际学术会议(ICCSMT 2024)

梁哲&#xff0c;同济大学长聘特聘教授&#xff0c;国家杰青、首届国家杰青延续项目获得者、上海市曙光学者、上海市优秀学术带头人。本科毕业于新加坡国立大计算机工程系、硕士毕业于新加坡国立大学工业与系统工程系、博士毕业于美国新泽西州立大学工业工程系。理论研究主要集…

修改Opcenter EXFN 页面超时时间(Adjust UI Session Extend Token)

如果你想修改Opcenter EXFN中页面Session的超时时间&#xff0c;你可以按照如下步骤修改SessionAge 这个参数&#xff1a; 管理员运行CMD执行以下命令 umconf -getconfig -file C:\temp\config.json如果第2步有报错&#xff0c;则执行步骤4;如果没有报错则执行第5步如果第2步…

探索光耦:光耦在电脑电源中的应用及其重要性

随着计算机技术的飞速发展&#xff0c;电脑已成为现代生活和工作中不可或缺的工具。无论是日常办公、游戏娱乐还是复杂的图像处理&#xff0c;电脑电源的稳定性和安全性都至关重要。作为电脑电源的核心部件之一&#xff0c;光耦&#xff08;光电耦合器&#xff09;在提升电源性…

JavaScript网页设计案例:互动式简历网站

JavaScript网页设计案例&#xff1a;互动式简历网站 在现代网页设计中&#xff0c;JavaScript 是实现交互和动态效果的关键技术。本文将通过一个完整的案例&#xff0c;展示如何使用 JavaScript 构建一个交互式的个人简历网页。本文不仅会涵盖 HTML 和 CSS 的使用&#xff0c;…

android和ios双端应用性能的测试工具

1.工具介绍 基于日常工作的需要&#xff0c;开发了一款新的android和ios端应用性能测试工具&#xff0c;本工具在数据测试方面与所流行的工具没有区别。欢迎下载使用体验。 本工具为筋斗云&#xff0c;工具说明 本工具无侵入&#xff0c;不需要root&#xff0c;低延迟…

(十七)、Mac 安装k8s

文章目录 1、Enable Kubernetes2、查看k8s运行状态3、启用 kubernetes-dashboard3.1、如果启动成功&#xff0c;可以在浏览器访问3.2、如果没有跳转&#xff0c;需要单独安装 kubernetes-dashboard3.2.1、方式一&#xff1a;一步到位3.2.2、方式二&#xff1a;逐步进行 1、Enab…

如何恢复被删除的 GitLab 项目?

GitLab 是一个全球知名的一体化 DevOps 平台&#xff0c;很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版&#xff0c;专门为中国程序员服务。可以一键式部署极狐GitLab。 学习极狐GitLab 的相关资料&#xff1a; 极狐GitLab 官网极狐…

time命令:轻松测量Linux命令执行时间!

一、命令简介 用途&#xff1a; 用于测量 Linux 命令执行的时间&#xff0c;包括实际时间、用户 CPU 时间和系统 CPU 时间。刚开始以为是用来“看现在几点钟”的 &#x1f972;。标签&#xff1a; 实用工具&#xff0c;性能分析。 ‍ 二、命令参数 2.1 命令格式 time [选项…

进程的那些事--实现shell

目录 前言 一、预备知识 二、实现步骤 1.思路 2.实现 总结 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 学习的本质就是变现 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、预备知识 char * fgets ( char * str, i…

讯飞星火编排创建智能体学习(二)决策节点

目录 概述 决策节点 文生图节点 连接节点 测试结果 概述 在上一篇博文讯飞星火编排创建智能体学习&#xff08;一&#xff09;最简单的智能体构建-CSDN博客&#xff0c;我介绍了编排创作智能体&#xff0c;这篇来介绍一下“决策节点”。 决策节点 在编排创作智能体中&…