大模型推理任务Nvidia GPU选型指南

大型语言模型 (LLM)(如 GPT-4、BERT 和其他基于 Transformer 的模型)彻底改变了 AI 格局。这些模型需要大量计算资源来进行训练和推理。选择合适的 GPU 进行 LLM 推理可以极大地影响性能、成本效益和可扩展性。

在本文中,我们将探索最适合 LLM 推理任务的 NVIDIA GPU,并根据 CUDA 核心、Tensor 核心、VRAM、时钟频率和价格对它们进行比较。无论你是在设置个人项目、研究环境还是大规模生产部署,本指南都将帮助你选择最适合需求的 GPU。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割 

1、了解关键 GPU 规格

在深入了解列表之前,让我们简要介绍一下使 GPU 适合 LLM 推理的关键规格:

  • CUDA 核心:这些是 GPU 的主要处理单元。更高的 CUDA 核心数量通常意味着更好的并行处理性能。
  • Tensor 核心:专为深度学习任务设计的专用核心,例如矩阵乘法,这对于神经网络操作至关重要。
  • VRAM(视频 RAM):这是 GPU 可用于存储数据和模型的内存。更多的 VRAM 可以高效处理更大的模型和数据集。
  • 时钟频率:表示 GPU 运行的速度,以 MHz 为单位。频率越高,性能越好。
  • 价格:GPU 的成本是一个关键因素,尤其是对于预算有限的企业或研究实验室而言。平衡性能需求和可负担性至关重要。

2、用于 LLM 推理的顶级 NVIDIA GPU

下表根据 NVIDIA GPU 对 LLM 推理的适用性对其进行排名,同时考虑了性能和价格:

3、LLM 推理的首选

  • NVIDIA H100:作为 LLM 推理任务的无可争议的领导者,H100 提供最多数量的 Tensor Core 和 CUDA Core。它还配备了 80 GB 的 HBM3 内存,非常适合处理最大的模型。然而,这种能力的价格不菲,因此最适合预算充足的企业和研究实验室。
  • NVIDIA A100:另一个强有力的竞争者 A100 凭借其高 Tensor Core 数量和灵活的内存选项(40 GB 或 80 GB HBM2e)为 LLM 任务提供了出色的性能。它比 H100 更具成本效益,同时仍提供顶级性能。
  • NVIDIA L40:基于 Ada Lovelace 架构的 L40 在性能和成本之间实现了平衡。它拥有高 CUDA 和 Tensor Core 数量,以及 48 GB 的 GDDR6 内存。对于那些寻求高性能但又不想花太多钱购买 H100 或 A100 的人来说,这是一个不错的选择。
  • NVIDIA A40:A40 拥有 4,608 个 Tensor Core 和 48 GB GDDR6 VRAM,性能稳定,适合以更适中的价格执行高性能推理任务。
  • NVIDIA V100:虽然基于较旧的 Volta 架构,但 V100 仍凭借强大的 Tensor Core 数量和 HBM2 内存占据一席之地。对于那些想要强劲性能但又不想购买最新型号的人来说,这是一个不错的选择。

4、经济实惠的选择

对于预算紧张或项目规模较小的用户,仍有几种可行的选择:

  • NVIDIA RTX 3090 和 RTX 3080:这些消费级 GPU 以其价格提供出色的性能,使其成为需要强大本地设置的开发人员或研究人员的理想选择。
  • NVIDIA RTX 2080 Ti 和 RTX 2080 Super:这些 GPU 提供不错的 Tensor Core 数量,可以有效处理中等大小的模型。它们非常适合小规模推理任务或开发工作。
  • NVIDIA RTX 3060、RTX 2060 Super 和 RTX 3070:虽然这些 GPU 的 Tensor Core 较少,但它们非常实惠,并且仍然可以充分执行轻量级推理任务。

5、结束语

选择适合 LLM 推理的 GPU 在很大程度上取决于你的特定需求和预算。如果你运营的是大型生产环境或研究实验室,投资 H100 或 A100 将提供无与伦比的性能。对于规模较小的团队或个人开发者来说,RTX 3090 或 RTX 3080 等 GPU 在成本和性能之间实现了良好的平衡。


原文链接:大模型推理GPU选型指南 - BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/54922.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring的热部署工具和数据库密码加盐操作

1.布置热部署 引言:在程序运行起来后,如果我们对代码进行了修改,需要重新测试修改后的程序,就得重新启动程序,这样很麻烦。于是引入热部署之后,我们就不需要重新启动程序,会自动更正。 1.配置po…

牛顿迭代法求解x 的平方根

牛顿迭代法是一种可以用来快速求解函数零点的方法。 为了叙述方便,我们用 C C C表示待求出平方根的那个整数。显然, C C C的平方根就是函数 f ( x ) x c − C f(x)x^c-C f(x)xc−C 的零点。 牛顿迭代法的本质是借助泰勒级数,从初始值开始快…

前端大模型入门:使用Transformers.js手搓纯网页版RAG(二)- qwen1.5-0.5B - 纯前端不调接口

书接上文,本文完了RAG的后半部分,在浏览器运行qwen1.5-0.5B实现了增强搜索全流程。但受限于浏览器和模型性能,仅适合于研究、离线和高隐私场景,但对前端小伙伴来说大模型也不是那么遥不可及了,附带全部代码&#xff0c…

【深度学习】(5)--搭建卷积神经网络

文章目录 搭建卷积神经网络一、数据预处理1. 下载数据集2. 创建DataLoader(数据加载器) 二、搭建神经网络三、训练数据四、优化模型 总结 搭建卷积神经网络 一、数据预处理 1. 下载数据集 在PyTorch中,有许多封装了很多与图像相关的模型、…

vue3 通过 axios + jsonp 实现根据公网 ip, 查询天气信息

前提 安装 axios 的 jsonp 适配器。 pnpm install pingtou/axios-jsonp 简单使用说明:当与后端约定的请求 callback 参数名称不为为 callback 时,可修改。一般无需添加。 1. 获取当前电脑 ip 和城市信息 请求地址: https://whois.pconl…

Linux之我不会

一、常用命令 1.系统管理 1.1 systemctl start | stop | restart | status 服务名 案例实操 1 查看防火墙状态 systemctl status firewalld2 停止防火墙服务 systemctl stop firewalld3 启动防火墙服务 systemctl start firewalld4 重启防火墙服务 systemctl restart f…

【Canvas与诗词】秋夕.杜牧(银烛秋光冷画屏......)

【成图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>金六边形外圈绿色底录杜牧秋夕诗</title><style type"…

【电商搜索】现代工业级电商搜索技术-Facebook语义搜索技术QueSearch

【电商搜索】现代工业级电商搜索技术-Facebook语义搜索技术Que2Search 目录 文章目录 【电商搜索】现代工业级电商搜索技术-Facebook语义搜索技术Que2Search目录0. 论文信息1. 研究背景&#xff1a;2. 技术背景和发展历史&#xff1a;3. 算法建模3.1 模型架构3.1.1 双塔与分类 …

NLP:BERT的介绍

1. BERT 1.1 Transformer Transformer架构是一种基于自注意力机制(self-attention)的神经网络架构&#xff0c;它代替了以前流行的循环神经网络和长短期记忆网络&#xff0c;已经应用到多个自然语言处理方向。   Transformer架构由两个主要部分组成&#xff1a;编码器(Encod…

【HarmonyOS】应用引用media中的字符串资源如何拼接字符串

【HarmonyOS】应用引用media中的字符串资源如何拼接字符串 一、问题背景&#xff1a; 鸿蒙应用中使用字符串资源加载&#xff0c;一般文本放置在resoutces-base-element-string.json字符串配置文件中。便于国际化的处理。当然小项目一般直接引用字符串&#xff0c;不需要加载s…

python爬虫:从12306网站获取火车站信息

代码逻辑 初始化 (init 方法)&#xff1a; 设置请求头信息。设置车站版本号。 同步车站信息 (synchronization 方法)&#xff1a; 发送GET请求获取车站信息。返回服务器响应的文本。 提取信息 (extract 方法)&#xff1a; 从服务器响应中提取车站信息字符串。去掉字符串末尾的…

如何通过Dockfile更改docker中ubuntu的apt源

首先明确我们有一个宿主机和一个docker环境&#xff0c;接下来的步骤是基于他们两个完成的 1.在宿主机上创建Dockerfile 随便将后面创建的Dockerfile放在一个位置,我这里选择的是 /Desktop 使用vim前默认你已经安装好了vim 2.在输入命令“vim Dockerfile”之后&#xff0c;…

知识付费APP开发指南:基于在线教育系统源码的技术详解

本篇文章&#xff0c;我们将探讨基于在线教育系统源码的知识付费APP开发的技术细节&#xff0c;帮助开发者和企业快速入门。 一、选择合适的在线教育系统源码 选择合适的在线教育系统源码是开发的关键一步。市场上有许多开源和商业化的在线教育系统源码&#xff0c;开发者需要…

花都狮岭寄宿自闭症学校:开启孩子的生命之门

在花都狮岭这片充满温情的土地上&#xff0c;有一所特别的学校&#xff0c;它像一把钥匙&#xff0c;轻轻旋转&#xff0c;为自闭症儿童们开启了一扇通往无限可能的生命之门——这就是广州星贝育园自闭症儿童寄宿制学校。这所学校不仅是知识的摇篮&#xff0c;更是孩子们心灵成…

React 启动时webpack版本冲突报错

报错信息&#xff1a; 解决办法&#xff1a; 找到全局webpack的安装路径并cmd 删除全局webpack 安装所需要的版本

Python(六)-拆包,交换变量名,lambda

目录 拆包 交换变量值 引用 lambda函数 lambda实例 字典的lambda 推导式 列表推导式 列表推导式if条件判断 for循环嵌套列表推导式 字典推导式 集合推导式 拆包 看一下在Python程序中的拆包&#xff1a;把组合形成的元组形式的数据&#xff0c;拆分出单个元素内容…

影响上证50股指期货价格的因素有哪些?

上证50股指期货&#xff0c;作为反映上海证券交易所最具代表性50只股票整体表现的期货合约&#xff0c;其价格同样受到一系列复杂因素的驱动。以下是对影响上证50股指期货价格的主要因素进行的详细分析。 因素一、期货合约的供求关系 股指期货市场是一个由多头和空头双方共同…

具身智能综述:鹏城实验室中大调研近400篇文献,深度解析具身智能

具身智能是实现通用人工智能的必经之路&#xff0c;其核心是通过智能体与数字空间和物理世界的交互来完成复杂任务。近年来&#xff0c;多模态大模型和机器人技术得到了长足发展&#xff0c;具身智能成为全球科技和产业竞争的新焦点。然而&#xff0c;目前缺少一篇能够全面解析…

面试遇到的质量体系10个问题(深度思考)

在某大型公司的招聘面试中关于质量体系本身及建设实践方面的10个问题&#xff0c;这些问题都是偏理论性强一些&#xff0c;但是可以通过这些问题来了解大型公司对质量体系的一些想法和预期的内容&#xff0c;本期先抛出来这10个问题&#xff0c;不附答案&#xff0c;目的就是让…

AI绘画:Stable Diffusion 终极炼丹宝典:从入门到精通

前言 我是Lison&#xff0c;以浅显易懂的方式&#xff0c;与大家分享那些实实在在可行之宝藏。 历经耗时数十个小时&#xff0c;总算将这份Stable Diffusion的使用教程整理妥当。 从最初的安装与配置&#xff0c;细至界面功能的详解&#xff0c;再至实战案例的制作&#xff…