前端大模型入门:使用Transformers.js手搓纯网页版RAG(二)- qwen1.5-0.5B - 纯前端不调接口

书接上文,本文完了RAG的后半部分,在浏览器运行qwen1.5-0.5B实现了增强搜索全流程。但受限于浏览器和模型性能,仅适合于研究、离线和高隐私场景,但对前端小伙伴来说大模型也不是那么遥不可及了,附带全部代码,动手试试吧! 纯前端,不适用第三方接口

1 准备工作

1.1 前置知识

  • 读完前端大模型入门:使用Transformers.js实现纯网页版RAG(一)
  • 了解WebML 前端大模型入门:Transformer.js 和 Xenova
  • 基本的前端开发知识,esm和async/await

1.2页面代码框架

<!DOCTYPE html>
<html lang="en"><head><meta charset="UTF-8" /><title>网页端侧增强搜索</title>
</head><body><div id="app"><div><input type="text" id="question" /><button id="search">提问</button></div><div id="info"></div></div><script type="module">import {pipeline,env,cos_sim,} from "https://cdn.jsdelivr.net/npm/@xenova/transformers@2.17.2/dist/transformers.min.js";env.remoteHost = "https://hf-mirror.com";// 后续代码位置</script>
</body></html>

1.3 chrom/edge浏览器

目前测试firefox模型缓存有问题,建议用这两个,首次加载模型需要点时间,后续就不需要了,记住刷新时按F5不要清空缓存了。 

2 搜索代码实现 - R

2.1 准备好知识库和初始化向量库

前一篇文章已经介绍了相关内容,本文知识库有些不一样,因为是需要给大模型去生成回答,而不是直接给出答案,所以合并在了一起。

    const knowledges = ["问:洛基在征服地球的尝试中使用了什么神秘的物体?\n答:六角宝","问:复仇者联盟的哪两名成员创造了奥创?\n答:托尼·斯塔克(钢铁侠)和布鲁斯·班纳(绿巨人浩克)。","问:灭霸如何实现了他在宇宙中消灭一半生命的计划?\n答:通过使用六颗无限宝石","问:复仇者联盟用什么方法扭转了灭霸的行动?\n通过时间旅行收集宝石。","问:复仇者联盟的哪位成员牺牲了自己来打败灭霸?\n答:托尼·斯塔克(钢铁侠)",];const verctorStore = [];

2.2 定义打印输出和参数

topK控制送给大模型处理的最匹配的知识数量上下,越多的知识条数prompt越大会导致处理用时越长,一般三个最匹配的知识就差不多够用了,尤其是在网页中运行时

    const infoEl = document.getElementById("info");const print = text => infoEl.innerHTML = text;const knowEl = document.getElementById("knowEl");const topK = 3;

2.3 准备好嵌入和生成模型

嵌入使用 bge-base ,回答生成使用qwen1.5-0.5B

    const embedPipe = pipeline("feature-extraction", "Xenova/bge-base-zh-v1.5", {progress_callback: (d) => {infoEl.innerHTML = `embed:${JSON.stringify(d)}`;},});const chatPipe = pipeline('text-generation', 'Xenova/Qwen1.5-0.5B-Chat', {progress_callback: (d) => {infoEl.innerHTML = `chat:${JSON.stringify(d)}`;},});

2.4 定义向量库数据初始方法

这个不多赘述,和前一篇的类似

const buildVector = async () => {if (!verctorStore.size) {const embedding = await embedPipe;print(`构建向量库`)const output = await embedding(knowledges, {pooling: "mean",normalize: true,});knowledges.forEach((q, i) => {verctorStore[i] = output[i];});}};

2.5 定义问答主方法

 这里也不赘述过多,和上一篇不同之处在于:根据score从大到小排序,选出topK传入生成方法

  const search = async () => {const start = Date.now()const embedding = await embedPipe;const question = document.getElementById("question").value;const [qVector] = await embedding([question], {pooling: "mean",normalize: true,});await buildVector();const scores = verctorStore.map((q, i) => {return {score: cos_sim(qVector.data, verctorStore[i].data),knowledge: knowledges[i],index: i,};});scores.sort((a, b) => b.score - a.score);const picks = scores.slice(0, topK)const docs = picks.map(e => e.knowledge)const answer = await generateAnswer(question, docs.join('\n'))print(answer + `(用时:${Date.now()- start}ms)`)};document.querySelector("#search").onclick = search;

3 生成代码实现 - G

这一部分主要介绍generateAnser的实现

3.1 定义prompt

 这部分自己测试时可多调整下,prompt定义的越好效果越好

const prompt =`请根据【上下文】回答【问题】,当得不到较为准确的答案时,必须回答我不知道。【上下文】${context}【问题】${question}请给出你的答案:`

3.2 构建消息和输入

const messages = [{ role: 'system', content: '你是一个分析助手,根据上下文回答问题。必须生成更人性化的答案。' },{ role: 'user', content: prompt }]console.log(messages)// 生成chaconst text = generator.tokenizer.apply_chat_template(messages, {tokenize: false,add_generation_prompt: true,});console.log(text)

3.3 等待回答返回首个答案

      print(`思考中...`)const output = await generator(text, {max_new_tokens: 128,do_sample: false,return_full_text: false,});console.log(output)return output[0].generated_text;

4 运行测试

4.1 等待模型加载就绪

嵌入和千问整体有接近1G的数据下载,需要稍微等待下,直到看到下图所示结果 

4.2 输入提问

我的问题是“他是怎么实现计划的”,点击提问

4.3 检查控制台输出的prompt

可以看到匹配到的三个答案和问题

<|im_start|>system
你是一个分析助手,根据上下文回答问题。必须生成更人性化的答案。<|im_end|>
<|im_start|>user
请根据【上下文】回答【问题】,当得不到较为准确的答案时,必须回答我不知道。【上下文】问:灭霸如何实现了他在宇宙中消灭一半生命的计划?
答:通过使用六颗无限宝石
问:复仇者联盟用什么方法扭转了灭霸的行动?
通过时间旅行收集宝石。
问:洛基在征服地球的尝试中使用了什么神秘的物体?
答:六角宝【问题】他是怎么实现计划的请给出你的答案:<|im_end|>
<|im_start|>assistant

 4.4 等待回复

耗时25s,有点长,但考虑到这是可以离线在端侧运行的非gpu版本,用于做一些后台任务还是可以的,结果如下

5 总结

5.1 qwen1.5-0.5B比预期效果好

 结果比续期要好一些,因为比较新的web版本大模型就找到qwen1.5-0.5B的,后续有时间我会出一期试试llama3.2-1B,但整个过程会比较长 - 因为还涉及到模型迁移

5.2 除非离线和高隐私环境网页大模型暂不适用

受限于网页性能和WebGPU的支持在transformer.js处于实验性阶段,生成用时比较久,除非是离线环境,以及对隐私要求比较高的情况下,目前的响应速度还是比较慢的

最近眼睛肿了,今天就一篇吧,剩下时间休息了,明天又得上班 ~ 啊啊啊

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/54917.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深度学习】(5)--搭建卷积神经网络

文章目录 搭建卷积神经网络一、数据预处理1. 下载数据集2. 创建DataLoader&#xff08;数据加载器&#xff09; 二、搭建神经网络三、训练数据四、优化模型 总结 搭建卷积神经网络 一、数据预处理 1. 下载数据集 在PyTorch中&#xff0c;有许多封装了很多与图像相关的模型、…

vue3 通过 axios + jsonp 实现根据公网 ip, 查询天气信息

前提 安装 axios 的 jsonp 适配器。 pnpm install pingtou/axios-jsonp 简单使用说明&#xff1a;当与后端约定的请求 callback 参数名称不为为 callback 时&#xff0c;可修改。一般无需添加。 1. 获取当前电脑 ip 和城市信息 请求地址&#xff1a; https://whois.pconl…

Linux之我不会

一、常用命令 1.系统管理 1.1 systemctl start | stop | restart | status 服务名 案例实操 1 查看防火墙状态 systemctl status firewalld2 停止防火墙服务 systemctl stop firewalld3 启动防火墙服务 systemctl start firewalld4 重启防火墙服务 systemctl restart f…

【Canvas与诗词】秋夕.杜牧(银烛秋光冷画屏......)

【成图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>金六边形外圈绿色底录杜牧秋夕诗</title><style type"…

【电商搜索】现代工业级电商搜索技术-Facebook语义搜索技术QueSearch

【电商搜索】现代工业级电商搜索技术-Facebook语义搜索技术Que2Search 目录 文章目录 【电商搜索】现代工业级电商搜索技术-Facebook语义搜索技术Que2Search目录0. 论文信息1. 研究背景&#xff1a;2. 技术背景和发展历史&#xff1a;3. 算法建模3.1 模型架构3.1.1 双塔与分类 …

NLP:BERT的介绍

1. BERT 1.1 Transformer Transformer架构是一种基于自注意力机制(self-attention)的神经网络架构&#xff0c;它代替了以前流行的循环神经网络和长短期记忆网络&#xff0c;已经应用到多个自然语言处理方向。   Transformer架构由两个主要部分组成&#xff1a;编码器(Encod…

【HarmonyOS】应用引用media中的字符串资源如何拼接字符串

【HarmonyOS】应用引用media中的字符串资源如何拼接字符串 一、问题背景&#xff1a; 鸿蒙应用中使用字符串资源加载&#xff0c;一般文本放置在resoutces-base-element-string.json字符串配置文件中。便于国际化的处理。当然小项目一般直接引用字符串&#xff0c;不需要加载s…

python爬虫:从12306网站获取火车站信息

代码逻辑 初始化 (init 方法)&#xff1a; 设置请求头信息。设置车站版本号。 同步车站信息 (synchronization 方法)&#xff1a; 发送GET请求获取车站信息。返回服务器响应的文本。 提取信息 (extract 方法)&#xff1a; 从服务器响应中提取车站信息字符串。去掉字符串末尾的…

如何通过Dockfile更改docker中ubuntu的apt源

首先明确我们有一个宿主机和一个docker环境&#xff0c;接下来的步骤是基于他们两个完成的 1.在宿主机上创建Dockerfile 随便将后面创建的Dockerfile放在一个位置,我这里选择的是 /Desktop 使用vim前默认你已经安装好了vim 2.在输入命令“vim Dockerfile”之后&#xff0c;…

知识付费APP开发指南:基于在线教育系统源码的技术详解

本篇文章&#xff0c;我们将探讨基于在线教育系统源码的知识付费APP开发的技术细节&#xff0c;帮助开发者和企业快速入门。 一、选择合适的在线教育系统源码 选择合适的在线教育系统源码是开发的关键一步。市场上有许多开源和商业化的在线教育系统源码&#xff0c;开发者需要…

花都狮岭寄宿自闭症学校:开启孩子的生命之门

在花都狮岭这片充满温情的土地上&#xff0c;有一所特别的学校&#xff0c;它像一把钥匙&#xff0c;轻轻旋转&#xff0c;为自闭症儿童们开启了一扇通往无限可能的生命之门——这就是广州星贝育园自闭症儿童寄宿制学校。这所学校不仅是知识的摇篮&#xff0c;更是孩子们心灵成…

React 启动时webpack版本冲突报错

报错信息&#xff1a; 解决办法&#xff1a; 找到全局webpack的安装路径并cmd 删除全局webpack 安装所需要的版本

Python(六)-拆包,交换变量名,lambda

目录 拆包 交换变量值 引用 lambda函数 lambda实例 字典的lambda 推导式 列表推导式 列表推导式if条件判断 for循环嵌套列表推导式 字典推导式 集合推导式 拆包 看一下在Python程序中的拆包&#xff1a;把组合形成的元组形式的数据&#xff0c;拆分出单个元素内容…

影响上证50股指期货价格的因素有哪些?

上证50股指期货&#xff0c;作为反映上海证券交易所最具代表性50只股票整体表现的期货合约&#xff0c;其价格同样受到一系列复杂因素的驱动。以下是对影响上证50股指期货价格的主要因素进行的详细分析。 因素一、期货合约的供求关系 股指期货市场是一个由多头和空头双方共同…

具身智能综述:鹏城实验室中大调研近400篇文献,深度解析具身智能

具身智能是实现通用人工智能的必经之路&#xff0c;其核心是通过智能体与数字空间和物理世界的交互来完成复杂任务。近年来&#xff0c;多模态大模型和机器人技术得到了长足发展&#xff0c;具身智能成为全球科技和产业竞争的新焦点。然而&#xff0c;目前缺少一篇能够全面解析…

面试遇到的质量体系10个问题(深度思考)

在某大型公司的招聘面试中关于质量体系本身及建设实践方面的10个问题&#xff0c;这些问题都是偏理论性强一些&#xff0c;但是可以通过这些问题来了解大型公司对质量体系的一些想法和预期的内容&#xff0c;本期先抛出来这10个问题&#xff0c;不附答案&#xff0c;目的就是让…

AI绘画:Stable Diffusion 终极炼丹宝典:从入门到精通

前言 我是Lison&#xff0c;以浅显易懂的方式&#xff0c;与大家分享那些实实在在可行之宝藏。 历经耗时数十个小时&#xff0c;总算将这份Stable Diffusion的使用教程整理妥当。 从最初的安装与配置&#xff0c;细至界面功能的详解&#xff0c;再至实战案例的制作&#xff…

使用mendeley生成APA格式参考文献

mendeley 是一款文献管理工具&#xff0c;可以在word中方便的插入引用文献。 效果对比&#xff1a; 注&#xff1a;小绿鲸有三种导出格式&#xff0c;分别为复制、导出为Bibtex和导出为Endnote三种。 mendeley 下载与安装 Download Mendeley Reference Manager For Desktop mac…

98问答网是一个怎样的平台?它主要提供哪些服务?

98问答网是一个集知识分享、问题解答与社区交流为一体的综合性在线问答平台。该平台旨在通过汇聚来自各行各业的专家、学者以及广大网友的智慧&#xff0c;为用户提供一个快速获取准确信息、解决生活工作中遇到的各种问题的渠道。 主要服务包括&#xff1a; 问题提问与解答&am…

10.C++程序中的循环语句

C中提供了三种循环语句&#xff08;for循环&#xff0c;while循环以及do-while循环)来使程序员可以更方便地对数据进行迭代操作。 if语句 for语句的格式为&#xff1a; for(初始化语句&#xff1b;循环条件&#xff1b;迭代语句&#xff09; &#xff5b; 代码块 &#x…