Docker的数据管理和网络通信

目录

一、Docker 的数据管理

1.数据卷

2.数据卷容器

二、端口映射

三、容器互联(使用centos镜像)

四、*Docker 镜像的创建

1.基于现有镜像创建

2.基于本地模板创建

3.基于Dockerfile 创建

//联合文件系统(UnionFS)

//镜像加载原理

//Dockerfile

五、Dockerfile 案例

六、搭建本地私有仓库


一、Docker 的数据管理

管理 Docker 容器中数据主要有两种方式:数据卷(Data Volumes)和数据卷容器(DataVolumes Containers)

1.数据卷

数据卷是一个供容器使用的特殊目录,位于容器中。可将宿主机的目录挂载到数据卷上,对数据卷的修改操作立刻可见,并且更新数据不会影响镜像,从而实现数据在宿主机与容器之间的迁移。数据卷的使用类似于 Linux 下对目录进行的 mount 操作。

docker pull centos:7

#宿主机目录/var/www 挂载到容器中的/data1。

注意:宿主机本地目录的路径必须是使用绝对路径。如果路径不存在,Docker会自动创建相应的路径。

docker run -v /var/www:/data1 --name web1 -it centos:7 /bin/bash  

#-v 选项可以在容器内创建数据卷

ls
echo "this is web1" > /data1/abc.txt
exit

#返回宿主机进行查看

cat  /var/www/abc.txt

2.数据卷容器

如果需要在容器之间共享一些数据,最简单的方法就是使用数据卷容器。数据卷容器是一个普通的容器,专门提供数据卷给其他容器挂载使用。
#创建一个容器作为数据卷容器

docker run --name web2 -v /data1 -v /data2 -it centos:7 /bin/bash
echo "this is web2" > /data1/abc.txt
echo "THIS IS WEB2" > /data2/ABC.txt

#使用 --volumes-from 来挂载 web2 容器中的数据卷到新的容器

docker run -it --volumes-from web2 --name web3 centos:7 /bin/bash
cat /data1/abc.txt
cat /data2/ABC.txt

二、端口映射

在启动容器的时候,如果不指定对应的端口,在容器外是无法通过网络来访问容器内的服务。端口映射机制将容器内的服务提供给外部网络访问,实质上就是将宿主机的端口映射到容器中,使得外部网络访问宿主机的端口便可访问容器内的服务。

docker run -d --name test1 -P nginx                    #随机映射端口(从32768开始)docker run -d --name test2 -p 43000:80 nginx        #指定映射端口docker ps -a
CONTAINER ID   IMAGE     COMMAND                  CREATED          STATUS          PORTS                   NAMES
9d3c04f57a68   nginx     "/docker-entrypoint.…"   4 seconds ago    Up 3 seconds    0.0.0.0:43000->80/tcp   test2
b04895f870e5   nginx     "/docker-entrypoint.…"   17 seconds ago   Up 15 seconds   0.0.0.0:49170->80/tcp   test1

浏览器访问:http://192.168.80.10:43000    、http://192.168.80.10:49170

三、容器互联(使用centos镜像)

默认情况下docker容器重新创建后,对应的容器IP地址可能会改变,这样如果两个容器之间通信就会变得非常麻烦,每次都要修改通信的IP地址。
容器互联是通过容器的名称在容器间建立一条专门的网络通信隧道。简单点说,就是会在源容器和接收容器之间建立一条隧道,接收容器可以看到源容器指定的信息。
#创建并运行源容器取名web1

docker run -itd -P --name web1 centos:7 /bin/bash    

#创建并运行接收容器取名web2,使用--link选项指定连接容器以实现容器互联

docker run -itd -P --name web2 --link web1:web1 centos:7 /bin/bash            #--link 容器名:连接的别名
#进web2 容器, ping web1
docker exec -it web2 bash
ping web1

四、*Docker 镜像的创建

创建镜像有三种方法,分别为基于已有镜像创建、基于本地模板创建以及基于Dockerfile创建。

1.基于现有镜像创建

(1)首先启动一个镜像,在容器里做修改

docker create -it centos:7 /bin/bashdocker ps -a
CONTAINER ID   IMAGE      COMMAND       CREATED         STATUS    PORTS     NAMES
000550eb36da   centos:7   "/bin/bash"   3 seconds ago   Created             gracious_bassi

(2)在进入容器进行内容更新

docker exec

(3)然后将修改后的容器提交为新的镜像,需要使用该容器的 ID 号创建新镜像

docker commit -m "new" -a "centos" 000550eb36da centos:test

#常用选项:

  • -m 说明信息;
  • -a 作者信息;
  • -p 生成过程中停止容器的运行。
docker images

2.基于本地模板创建

1)通过导入操作系统模板文件可以生成镜像,模板可以从 OPENVZ 开源项目下载,下载地址为

http://openvz.org/Download/template/precreatedwget http://download.openvz.org/template/precreated/debian-7.0-x86-minimal.tar.gz

#导入为镜像

cat debian-7.0-x86-minimal.tar.gz | docker import - debian:test

2)#导出——导入

docker export

可能导致镜像非常臃肿,占用空间大;

3.基于Dockerfile 创建

//联合文件系统(UnionFS)


UnionFS(联合文件系统):Union文件系统(UnionFS)是一种分层、轻量级并且高性能的文件系统,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下。AUFS、OverlayFS 及 Devicemapper 都是一种 UnionFS。

Union文件系统是Docker镜像的基础。镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。

特性:一次同时加载多个文件系统,但从外面看起来,只能看到一个文件系统,联合加载会把各层文件系统叠加起来,这样最终的文件系统会包含所有底层的文件和目录。

我们下载的时候看到的一层层的就是联合文件系统。

//镜像加载原理

Docker的镜像实际上由一层一层的文件系统组成,这种层级的文件系统就是UnionFS。

bootfs主要包含bootloader和kernel,bootloader主要是引导加载kernel,Linux刚启动时会加载bootfs文件系统。

在Docker镜像的最底层是bootfs,这一层与我们典型的Linux/Unix系统是一样的,包含boot加载器和内核。当boot加载完成之后整个内核就都在内存中了,此时内存的使用权已由bootfs转交给内核,此时系统也会卸载bootfs。

rootfs,在bootfs之上。包含的就是典型Linux系统中的/dev,/proc,/bin,/etc等标准目录和文件。rootfs就是各种不同的操作系统发行版,比如Ubuntu,Centos等等。

我们可以理解成一开始内核里什么都没有,操作一个命令下载debian,这时就会在内核上面加了一层基础镜像;再安装一个emacs,会在基础镜像上叠加一层image;接着再安装一个apache,又会在images上面再叠加一层image。最后它们看起来就像一个文件系统即容器的rootfs。在Docker的体系里把这些rootfs叫做Docker的镜像。但是,此时的每一层rootfs都是read-only的,我们此时还不能对其进行操作。当我们创建一个容器,也就是将Docker镜像进行实例化,系统会在一层或是多层read-only的rootfs之上分配一层空的read-write的rootfs。


//为什么Docker里的centos的大小才200M?
因为对于精简的OS,rootfs可以很小,只需要包含最基本的命令、工具和程序库就可以了,因为底层直接用宿主机的kernel,自己只需要提供rootfs就可以了。由此可见对于不同的linux发行版,bootfs基本是一致的,rootfs会有差别,因此不同的发行版可以共用bootfs。


//Dockerfile

Docker镜像是一个特殊的文件系统,除了提供容器运行时所需的程序、库、资源、配置等文件外,还包含了一些为运行时准备的一些配置参数(如匿名卷、环境变量、用户等)。镜像不包含任何动态数据,其内容在构建之后也不会被改变。

镜像的定制实际上就是定制每一层所添加的配置、文件。如果我们可以把每一层修改、安装、构建、操作的命令都写入一个脚本,用这个脚本来构建、定制镜像,那么镜像构建透明性的问题、体积的问题就都会解决。这个脚本就是 Dockerfile。

Dockerfile是一个文本文件,其内包含了一条条的指令(Instruction),每一条指令构建一层,因此每一条指令的内容,就是描述该层应当如何构建。有了Dockerfile,当我们需要定制自己额外的需求时,只需在Dockerfile上添加或者修改指令,重新生成 image 即可, 省去了敲命令的麻烦。

除了手动生成Docker镜像之外,可以使用Dockerfile自动生成镜像。Dockerfile是由多条的指令组成的文件,其中每条指令对应 Linux 中的一条命令,Docker 程序将读取Dockerfile 中的指令生成指定镜像。

Dockerfile结构大致分为四个部分:基础镜像信息、维护者信息、镜像操作指令和容器启动时执行指令。Dockerfile每行支持一条指令,每条指令可携带多个参数,支持使用以“#“号开头的注释。

#Docker 镜像结构的分层
镜像不是一个单一的文件,而是有多层构成。容器其实是在镜像的最上面加了一层读写层,在运行容器里做的任何文件改动,都会写到这个读写层。如果删除了容器,也就删除了其最上面的读写层,文件改动也就丢失了。Docker使用存储驱动管理镜像每层内容及可读写层的容器层。

  • (1)Dockerfile 中的每个指令都会创建一个新的镜像层;
  • (2)镜像层将被缓存和复用;
  • (3)当Dockerfile 的指令修改了,复制的文件变化了,或者构建镜像时指定的变量不同了,对应的镜像层缓存就会失效;
  • (4)某一层的镜像缓存失效,它之后的镜像层缓存都会失效;
  • (5)镜像层是不可变的,如果在某一层中添加一个文件,然后在下一层中删除它,则镜像中依然会包含该文件,只是这个文件在 Docker 容器中不可见了。

#Dockerfile 操作常用的指令:


(1)FROM 镜像
指定新镜像所基于的基础镜像,第一条指令必须为FROM 指令,每创建一个镜像就需要一条 FROM 指令

(2)MAINTAINER  | LEBAL名字
说明新镜像的维护人信息

(3)RUN 命令
在所基于的镜像上执行命令,并提交到新的镜像中。尽量将多条命令合并在一个RUN指令里。用 ;或 && 或 <<EOF 串起来使用。

(4)ENTRYPOINT ["要运行的程序", "参数 1", "参数 2"]
设定容器启动时第一个运行的命令及其参数
可以通过使用命令docker run --entrypoint 来覆盖镜像中的ENTRYPOINT指令的内容。

(5)CMD ["要运行的程序", "参数1", "参数2"] 
上面的是exec形式shell形式:CMD 命令 参数1 参数2
启动容器时默认执行的命令或者脚本,Dockerfile只能有一条CMD命令。如果指定多条命令,只执行最后一条命令。
如果在docker run时指定了命令或者镜像中有ENTRYPOINT,那么CMD就会被覆盖。
CMD 可以为 ENTRYPOINT 指令提供默认参数。

(6)EXPOSE 端口号
指定新镜像加载到 Docker 时要开启的端口

(7)ENV 环境变量 变量值
设置一个环境变量的值,会被后面的 RUN 使用

(8)ADD 源文件/目录 目标文件/目录
将源文件复制到镜像中,源文件要与 Dockerfile 位于相同目录中,或者是一个 URL
有如下注意事项:
1、如果源路径是个文件,且目标路径是以 / 结尾, 则docker会把目标路径当作一个目录会把源文件拷贝到该目录下。
如果目标路径不存在,则会自动创建目标路径。

2、如果源路径是个文件,且目标路径是不以 / 结尾,则docker会把目标路径当作一个文件
如果目标路径不存在,会以目标路径为名创建一个文件,内容同源文件;
如果目标文件是个存在的文件,会用源文件覆盖它,当然只是内容覆盖,文件名还是目标文件名。
如果目标文件实际是个存在的目录,则会源文件拷贝到该目录下。 注意,这种情况下,最好显示的以 / 结尾,以避免混淆。

3、如果源路径是个目录,且目标路径不存在,则docker会自动以目标路径创建一个目录把源路径目录下的文件拷贝进来。
如果目标路径是个已经存在的目录,则docker会把源路径目录下的文件拷贝到该目录下。

4、如果源文件是个归档文件(压缩文件),则docker会自动帮解压。    
URL下载和解压特性不能一起使用。任何压缩文件通过URL拷贝,都不会自动解压。

(9)COPY 源文件/目录 目标文件/目录
只复制本地主机上的文件/目录复制到目标地点,源文件/目录要与Dockerfile 在相同的目录中

(10)VOLUME ["目录"]
声明了容器中的目录作为匿名卷(docker run -v /var/lib/docker/volumes/{容器ID}:容器数据卷目录),但是并没有将匿名卷绑定到宿主机指定目录的功能,任何向挂载点中写入的信息都不会记录进容器存储层。
必须使用双引号,不能使用单引号

指定VOLUME只是为了避免用户忘记指定-v时导致的数据全部在容器中,这样的话容器一旦被删除所有的数据都丢失了。

(11)USER 用户名/UID
指定运行容器时的用户

(12)WORKDIR 路径
为后续的 RUN、CMD、ENTRYPOINT 指定工作目录

(13)ONBUILD 命令
指定所生成的镜像作为一个基础镜像时所要运行的命令
当在一个Dockerfile文件中加上ONBUILD指令,该指令对利用该Dockerfile构建镜像(比如为A镜像)不会产生实质性影响。
但是当编写一个新的Dockerfile文件来基于A镜像构建一个镜像(比如为B镜像)时,这时构造A镜像的Dockerfile文件中的ONBUILD指令就生效了,在构建B镜像的过程中,首先会执行ONBUILD指令指定的指令,然后才会执行其它指令。

(14)ARG
设置编译镜像时加入的参数
使用 ENV 指令定义的环境变量始终会覆盖同名的 ARG 指令,无论前后顺序如何

ARG CONT_IMG_VER
ENV CONT_IMG_VER=v1.0.0
RUN echo $CONT_IMG_VERdocker build --build-arg CONT_IMG_VER=v2.0.1 .

在编写 Dockerfile 时,有严格的格式需要遵循:
●第一行必须使用 FROM 指令指明所基于的镜像名称;
●之后使用 MAINTAINER 指令说明维护该镜像的用户信息;
●然后是镜像操作相关指令,如 RUN 指令。每运行一条指令,都会给基础镜像添加新的一层。
●最后使用 CMD 指令指定启动容器时要运行的命令操作。

ADD和COPY有什么区别?

共同点:都可以将本地的文件或目录复制到镜像里

区别:ADD可以通过URL地址下载文件并复制到镜像里,还能将本地的压缩包文件解压后再复制到镜像里;

COPY没有URL下载和压缩包解压的特性。

CMD和ENTRYPOINT的区别?

共同点:都可以用来指定容器的启动命令

区别:ENTRYPOINT指定的容器启动命令优先级更高。如果两个同时存在,那么CMD指定的内容将作为ENTRYPOINT指定的容器启动命令的参数使用。

容器启动命令的优先级排行:

docker run --entrypoint="命令"   >   镜像里的ENTRYPOINT指令指定的“命令”  >  docker run ....镜像“命令”  >  镜像里的CMD指令指定的“命令”

五、Dockerfile 案例

#建立工作目录

mkdir  /opt/apache
cd  /opt/apache
vim Dockerfile

#基于的基础镜像

FROM centos:7

#维护镜像的用户信息

MAINTAINER this is apache image <wl>

#镜像操作指令安装apache软件

RUN yum -y update
RUN yum -y install httpd

#开启 80 端口

EXPOSE 80

#复制网站首页文件

ADD index.html /var/www/html/index.html

#下载nginx

//方法一:
#将执行脚本复制到镜像中

ADD run.sh /run.sh
RUN chmod 755 /run.sh

#启动容器时执行脚本

CMD ["/run.sh"]

//方法二:

ENTRYPOINT [ "/usr/sbin/apachectl" ]
CMD ["-D", "FOREGROUND"]

//准备执行脚本

vim run.sh
#!/bin/bash
rm -rf /run/httpd/*                            #清理httpd的缓存
/usr/sbin/apachectl -D FOREGROUND            #指定为前台运行
#因为Docker容器仅在它的1号进程(PID为1)运行时,会保持运行。如果1号进程退出了,Docker容器也就退出了。

//准备网站页面

echo "this is test web" > index.html

//生成镜像

docker build -t httpd:centos .           #注意别忘了末尾有"."

//新镜像运行容器

docker run -d -p 1216:80 httpd:centos

//测试
http://192.168.80.10:1216/


########如果有网络报错提示########
[Warning] IPv4 forwarding is disabled. Networking will not work.解决方法:

vim /etc/sysctl.conf
net.ipv4.ip_forward=1sysctl -p
systemctl restart network
systemctl restart docker

六、搭建本地私有仓库

#首先下载 registry 镜像

docker pull registry

#在 daemon.json 文件中添加私有镜像仓库地址

vim /etc/docker/daemon.json
{"insecure-registries": ["192.168.80.10:5000"],                        #添加,注意用逗号结尾"registry-mirrors": ["https://6ijb8ubo.mirror.aliyuncs.com"]
}systemctl restart docker

#运行 registry 容器

docker run -itd -v /data/registry:/var/lib/registry -p 5000:5000 --restart=always --name registry registry:latest

-----------------------------------------------------------------------------------------

  • -itd:在容器中打开一个伪终端进行交互操作,并在后台运行
  • -v:把宿主机的/data/registry目录绑定到容器/var/lib/registry目录(这个目录是registry容器中存放镜像文件的目录),来实现数据的持久化;
  • -p:映射端口;访问宿主机的5000端口就访问到registry容器的服务了
  • --restart=always:这是重启的策略,在容器退出时总是重启容器
  • --name registry:创建容器命名为registry
  • registry:latest:这个是刚才pull下来的镜像

-----------------------------------------------------------------------------------------
Docker容器的重启策略如下:

  • no:默认策略,在容器退出时不重启容器
  • on-failure:在容器非正常退出时(退出状态非0),才会重启容器
  • on-failure:3 :在容器非正常退出时重启容器,最多重启3次
  • always:在容器退出时总是重启容器
  • unless-stopped:在容器退出时总是重启容器,但是不考虑在Docker守护进程启动时就已经停止了的容器


#为镜像打标签

docker tag centos:7 192.168.80.10:5000/centos:v1

#上传到私有仓库

docker push 192.168.80.10:5000/centos:v1

#列出私有仓库的所有镜像

curl http://192.168.80.10:5000/v2/_catalog

#出私有仓库的 centos 镜像有哪些tag

curl http://192.168.80.10:5000/v2/centos/tags/list

#先删除原有的 centos 的镜像,再测试私有仓库下载

docker rmi -f 8652b9f0cb4c
docker pull 192.168.80.10:5000/centos:v1

 总结:使用dockerfile构建镜像的步骤

1)编写dockerfile文件,在第一行用from指令指定基础镜像

2)用maintainer或label指令指定镜像的元数据信息(选)

3)用run add copy env expose等指令编写操作镜像的过程

4)最后用cmd或entrypoint指令指定容器启动命令

5)完成dockerfile文件的编写后,用 docker build -t 镜像名:标签 .  命令来构建镜像

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/46656.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BL201分布式I/O耦合器连接Profinet网络

钡铼技术的BL201分布式I/O耦合器是一个用于Profinet网络的设备&#xff0c;用于连接远程输入/输出&#xff08;I/O&#xff09;设备到控制系统&#xff0c;如可编程逻辑控制器&#xff08;PLC&#xff09;&#xff0c;能够实现分布式的I/O连接和通信。 它支持标准Profinet IO …

一文说透Springboot单元测试

你好&#xff0c;我是柳岸花开。 一、单元测试说明 1 单元测试的优点与基本原则 一个好的单元测试应该具备以下FIRST 原则和AIR原则中的任何一条&#xff1a; 单元测试的FIRST 规则 Fast 快速原则&#xff0c;测试的速度要比较快&#xff0c; Independent 独立原则&#xff0c;…

【Springboot】新增profile环境配置应用启动失败

RT 最近接手了一个新的项目&#xff0c;为了不污染别人的环境&#xff0c;我新增了一个自己的环境配置。结果&#xff0c;在启动的时候总是失败&#xff0c;就算是反复mvn clean install也是无效。 问题现象 卡住无法进行下一步 解决思路 由于之前都是能启动的&#xff0c…

随机过程基础:3.平稳过程(2)

平稳过程是指随机过程的统计特性&#xff08;如均值、方差、协方差等&#xff09;不随时间变化。我们可以在时间域或频率域上研究其性质。以下是对平稳过程的协方差函数和功率谱密度的详细讨论。 一、协方差函数 协方差函数就像是描述两个随机变量之间关系的一种“尺子”。想象…

LLM之Prompt(四)| OpenAI、微软发布Prompt技术报告

摘要 生成式人工智能 &#xff08;GenAI&#xff09; 系统正越来越多地部署在各行各业和研究机构。开发人员和用户通过使用提示或提示工程与这些系统进行交互。虽然提示是一个广泛提及且被研究的概念&#xff0c;但由于该领域的新生&#xff0c;存在相互矛盾的术语和对构成提示…

API接口的概念和接口测试的概念

一、什么是接口测试 接口测试是项目测试的一部分&#xff0c;顾名思义&#xff0c;它测试的主要对象是接口&#xff0c;是测试系统组件间接口的一种测试。接口测试主要用于检测外部系统与所测系统之间以及内部各系统之间的交互点。测试的重点是检查数据交互、传递、和控制管理过…

三级_网络技术_17_交换机及其配置

1.下面是一台三层交换机的部分路由表信息。根据表中的路由信息&#xff0c;以下描述错误的是()。 此设备启用了OSPF动态路由协议&#xff0c;并学到了E1和E2两种类型的OSPF外部路由 比设备通过动态路由协议得到缺省路由&#xff0c;下一跳是设备的TenGigabitEthernet1/15接口 …

聚类分析方法(三)

目录 五、聚类的质量评价&#xff08;一&#xff09;簇的数目估计&#xff08;二&#xff09;外部质量评价&#xff08;三&#xff09;内部质量评价 六、离群点挖掘&#xff08;一&#xff09;相关问题概述&#xff08;二&#xff09;基于距离的方法&#xff08;三&#xff09;…

泛微E-Cology WorkflowServiceXml SQL注入漏洞复现(QVD-2024-26136)

0x01 产品简介 泛微e-cology是一款由泛微网络科技开发的协同管理平台,支持人力资源、财务、行政等多功能管理和移动办公。 0x02 漏洞概述 2024年7月,泛微官方发布了新补丁,修复了一处SQL注入漏洞。经分析,攻击者无需认证即可利用该漏洞,建议受影响的客户尽快修复漏洞。…

springboot 适配ARM 架构

下载对应的maven https://hub.docker.com/_/maven/tags?page&page_size&ordering&name3.5.3-alpinedocker pull maven:3.5.3-alpinesha256:4c4e266aacf8ea6976b52df8467134b9f628cfed347c2f6aaf9e6aff832f7c45 2、下载对应的jdk https://hub.docker.com/_/o…

《后端程序员 · Nacos 常见配置 · 第一弹》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…

C++ 类和对象(A)

一、类与对象的初步认识 1.类是对象的抽象&#xff0c;而对象是类的具体实例。 类是抽象的&#xff0c;不占用内存&#xff1b;而对象是具体的&#xff0c;占用存储空间。 2.面向过程与面向对象 C语言是面向过程的&#xff0c;关注的是过程中的数据与方法。 C是面向对象的&…

3D打印技巧

blender建模设置 避免破面 插件&#xff1a;3D打印 其中 错误连续边bad contig. edges指的是同一条线两侧法向不同&#xff0c;解决方案&#xff1a;shiftn 零面zero face指有两个面重叠&#xff0c;解决方案&#xff1a;按距离合并 非平面non flat face指四边形面的四个顶…

Django select_related()方法

select_related()的作用 select_related()是Django ORM&#xff08;对象关系映射&#xff09;中的一种查询优化方法&#xff0c;主要用于减少数据库查询次数&#xff0c;提高查询效率。当你在查询一个模型实例时&#xff0c;如果这个实例有ForeignKey关联到其他模型&#xff0…

【.NET全栈】ASP.NET开发web应用——ASP.NET中的样式、主题和母版页

文章目录 前言一、在ASP.NET中应用CSS样式1、创建CSS样式&#xff08;1&#xff09;内联样式&#xff08;2&#xff09;内部样式表&#xff08;3&#xff09;外部样式表 2、应用CSS样式&#xff08;1&#xff09;菜鸟教程-简单例子&#xff08;2&#xff09;菜鸟教程-用户界面&…

2024-07-12 Unity AI状态机1 —— 框架介绍

文章目录 1 有限状态机2 状态机实现框架2.1 StateMachine2.2 BaseState2.3 ...State2.4 IAIObject 3 框架类图 本文章参考 B 站唐老狮 2023 年直播内容。点击前往唐老狮 B 站主页。 1 有限状态机 ​ 有限状态机&#xff08;Finite - State Machine&#xff0c;FSM&#xff09…

【Diffusion学习】【生成式AI】Diffusion Model 原理剖析 (2/4) (optional)【公式推导】

文章目录 影像生成模型本质上的共同目标【拟合分布】Maximum Likelihood Estimation VAE 影像生成模型本质上的共同目标【拟合分布】 Maximum Likelihood Estimation VAE

# Redis 入门到精通(四)-- linux 环境安装 redis

Redis 入门到精通&#xff08;四&#xff09;-- linux 环境安装 redis 一、linux 环境安装 redis – 基于 Linux 安装 redis 1、基于 Center 0S7 或者 unbunt-18.04 安装 Redis 1&#xff09;下载安装包wget http://download.redis.io/releases/redis-?.?.?.tar.gz 如&…

夏令营入门组day4

一. 题目 二. 思路 &#xff08;1&#xff09;B要先去和A回合&#xff0c;因为B只能将红染成蓝&#xff0c;不能直接将白染成蓝&#xff0c;所以B必须走A走过的路才有效。 &#xff08;2&#xff09;答案分为两部分&#xff0c;去和A回合的最短距离 以回合点为根节点&#xf…

FPGA上板项目(二)——PLL测试

目录 实验内容实验原理实验步骤实验结果 实验内容 将差分时钟信号转化为 192MHz 时钟信号作为输出。 实验原理 PLL&#xff0c;即锁相环&#xff0c;一种反馈控制电路&#xff0c;具有时钟倍频、分频、相位偏移和可编程占空比的功能。 实验步骤 添加 clocking wizard IP核&…