揭秘”大模型加速器”如何助力大模型应用

文章目录

  • 一、大模型发展面临的问题
  • 二、“大模型加速器”助力突破困难
    • 2.1 现场效果展示
      • 2.1.1 大模型加速器——文档解析引擎
      • 2.2.2 图表数据提取
  • 三、TextIn智能文档处理平台
    • 3.1 在线免费体验
      • 3.1.1 数学公式提取
      • 3.1.2 表格数据提取
  • 四、acge文本向量化模型
    • 4.1 介绍
    • 4.2 技术创新
    • 4.3 模型优势
  • 五、总结

一、大模型发展面临的问题

当前,大模型在人工智能领域的应用正日益广泛,但在处理中文文本时,却面临着多重挑战:

1、中文预料相对较少,这限制了大模型在中文领域的学习和推理能力。与英文等语言相比,中文语料库的规模较小,尤其是在特定领域和场景下的高质量语料更是稀缺,这使得大模型在训练过程中难以充分捕捉到中文的复杂性和多样性。

2、高质量文档解析的困难也进一步加剧了大模型在中文处理中的挑战。文档解析是自然语言处理领域的重要任务之一,它涉及对文档进行结构化和信息抽取,以便更好地理解文档内容。然而,中文文档的复杂性、多样性以及语义的丰富性,使得高质量文档解析变得尤为困难。现有的解析技术往往难以准确捕捉中文文档中的深层含义和复杂结构,这限制了大模型在文档理解和信息抽取方面的能力。

3、语料质量低也是大模型在处理中文文本时面临的一个问题。现有的中文语料库中,往往存在噪声、错误、不规范表达等问题,这些问题会严重影响大模型的训练效果和性能。高质量的预料是训练出优秀大模型的基础,但目前在中文领域,高质量预料的获取和整理仍是一个亟待解决的难题。

二、“大模型加速器”助力突破困难

在今年的世界人工智能大会期间,合合信息为大模型打造的“大模型加速器”备受关注。

2.1 现场效果展示

2.1.1 大模型加速器——文档解析引擎

在大模型训练的上游阶段,合合信息“大模型加速器”中的文档解析引擎凭借卓越的技术实力和创新能力,为大模型在文档解析领域的工作带来了一场变革。该引擎基于先进的自然语言处理(NLP)和计算机视觉技术,能够自动从复杂多样的非结构化(文本、表格、图像等)和半结构化文档中精准抽取关键数据,支持金融、法律、医疗、人力资源等多个知识领域的文档,极大地提升了信息处理的效率和准确性,为大模型输送珍贵的语料。

对于版面布局复杂的文档,如多栏布局、多图表嵌入的文件,TextIn能够精确还原阅读顺序,并支持Markdown、Json等多种格式的输出,为大模型提供高效、精准的序列文字输入。

更值得一提的是,TextIn文档解析工具还采用了文档树提取技术,能够为长文档构建详尽的文档树结构,准确判断文档的逻辑层次,为后续的Embedding优化提供了坚实的基础。

TextIn通用文档解析将100页文档解析速度提升至最快1.5秒以内:

P50(百页)P90(百页)P99(百页)平均(单页)
TextIn1.46s1.75s2.07s0.015s

表格中“P50”代表中位数响应时间,表示有一半的响应时间低于1.46s,而另一半高于这个值;“P90”代表 90% 的响应时间,表示90%的文档解析操作都在1.75秒以内完成;平均单页仅耗时0.015s,极大的提升了大模型文档解析速度。

2.2.2 图表数据提取

利用先进的文档解析引擎,能够高效地从复杂的文档中提取出关键的图表数据。通过智能识别图表中的线条、柱状、饼图区域等元素,并结合OCR(光学字符识别)技术读取图表中的标签和数值,文档解析引擎能够将这些视觉信息转化为结构化的数据格式,便于后续的数据分析、可视化或报告生成。这一技术不仅自动化了原本繁琐的手动数据收集过程,还显著提高了数据的准确性和提取速度。

支持以下多种多样的图表数据提取:

三、TextIn智能文档处理平台

3.1 在线免费体验

我们先来体验一下TextIn智能文档处理平台,官网地址(https://cc.co/16YSIZ):

3.1.1 数学公式提取

博主这里找了一个超复杂的数学公式图片,让我们来试试效果如何(大家可以保存图片自行去官网尝试https://cc.co/16YSIZ):

点击上传本地文件,刚一上传立马就提取出来了:

可以看到无论是文字还是公式都能非常准确的提取出来,字母大小写也没有任何错误,效果非常Nice,响应速度还非常快,以后提取别人的算法公式再也不愁了!

3.1.2 表格数据提取

接下来我们来试试常见的表格数据提取效果如何,博主这里找一个销售数据汇总表(大家可以保存图片自行去官网尝试https://cc.co/16YSIZ):

提取速度非常快速并且对于“,”和“.”数据符号识别准确无误,大家可以选择直接复制结果或者导出数据:

TextIn智能文档处理平台在智能文字识别领域发展了17年。该平台专注于图像处理、模式识别、神经网络、深度学习、结构化文本识别(STR)、自然语言处理(NLP)以及知识图谱等前沿人工智能技术的研究与创新。

四、acge文本向量化模型

4.1 介绍

合合信息“大模型加速器”集成了先进的acge_text_embedding模型(简称“acge模型”)可以有效优化“已读乱回”的“幻觉”的问题。通过对海量多领域数据的精细分析和学习,极大地提升了大模型在知识推理、智能问答和个性化推荐等方面的能力、速度和可靠性。acge模型的应用不仅使搜索和问答系统能够超越简单的文本匹配,更能深入洞察并精准回应用户的真实需求。

此外,acge模型还融入了持续学习训练方式,有效解决了传统神经网络在持续学习过程中容易出现的“知识覆盖”或“知识混淆”问题,确保了模型在知识积累的同时,能够保持对过往知识的稳定记忆。

有需求的小伙伴可以打开官网(https://cc.co/16YSIr)进行体验:

4.2 技术创新

Embedding算法是一种将高维离散数据(如单词、图像、物品等)映射到低维连续向量空间的技术。这种映射过程是通过训练一个模型(如神经网络)来学习的,使得相似的数据在向量空间中具有相近的表示。Embedding算法能够捕捉数据的潜在结构和语义信息,将复杂的原始数据转化为易于计算机处理和分析的向量形式。这种向量化表示不仅简化了数据的处理流程,还提高了机器学习模型的性能和效率。Embedding算法在自然语言处理、计算机视觉、推荐系统等多个领域都有广泛的应用,为各种任务提供了有效的特征表示方法。基于Embedding的检索系统流程图如下:

为了提高模型的效果,合合信息基于Embedding算法加入了对比学习技术,优化文本语义表示,通过最小化相似文本间的距离和最大化不同文本间的距离来精准捕捉语义差异;重视数据集的广度和质量,通过多场景和大量数据的挖掘提升模型泛化能力,同时精选高质量数据加速模型收敛;在技术开发中,采用多任务混合训练策略,结合多loss函数以适应不同任务需求,确保模型全面性能;引入持续学习机制,缓解新数据引入时的模型遗忘问题;并运用MRL技术训练可变维度嵌入,提升处理速度并降低存储成本。

4.3 模型优势

“acge模型”在中文文本向量化领域取得了重大突破并荣获 Massive Text Embedding Benchmark (MTEB) 中文榜单(C-MTEB)第一名的成绩:

相较于当前C-MTEB榜单上备受瞩目的开源模型,合合信息发布的acge模型凭借其轻量级的设计,展现了出色的资源占用优势。该模型不仅体积较小,对计算资源的需求也相对较低,从而降低了部署成本。此外,acge模型的文本处理能力尤为突出,支持最大输入文本长度为1024,足以应对绝大多数实际应用场景的需求。更为值得一提的是,acge模型还支持灵活的可变输出维度设置,使得用户能够根据具体任务或场景,自由调整模型输出,从而更高效地利用资源,实现最佳的文本处理效果。

目前,acge模型已在多个关键应用场景中充分展现其卓越性能:

1、文档分类:acge模型通过结合OCR技术,能够精准识别图片、文档等场景中的文字内容。利用强大的文本编码能力,结合先进的语义相似度匹配技术,构建高效的通用文档分类模型,实现快速且准确的文档分类。

2、长文档信息抽取:面对复杂的长文档,acge模型通过独特的文档解析引擎和层级切片技术,能够快速生成精准的向量索引。这些索引不仅提高了检索效率,还使得我们能够精确抽取内容块,从而显著提升长文档信息抽取模型的精度和效率。

3、知识问答:acge模型通过文档解析引擎和层级切片技术,能够迅速生成向量索引,并精准定位文件内容。能够为用户提供更加精准、高效的知识问答服务,满足用户对信息检索和查询的多样化需求。

五、总结

本次世界人工智能大会现场,合合信息的“大模型加速器”凭借其卓越的高准确性和稳定性,实现了表格内容精准还原、复杂样本高效处理以及多语言文档快速识别,通过其强大的多语言识别技术和多类型文档支持能力,该“加速器”为金融、医学、财经、媒体等多个行业提供了高效、准确且实用的文档解析服务。

目前,这一大模型“加速器”已受到多家大模型厂商的青睐,并被广泛应用于多领域的文档解析中,帮助大模型更加顺畅地融入各类专业课场景,助力各行业实现数字化转型和智能化升级。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/44747.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据仓库介绍_维度表(三)

维度表概述 维度表是维度建模的基础和灵魂。前文提到,事实表紧紧围绕业务过程进行设计,而维度表则围绕业务过程所处的环境进行设计。维度表主要包含一个主键和各种维度字段,维度字段称为维度属性。 表设计步骤 确定维度(表&…

Django项目的基本准备工作【1】

【 一 】pip换源 # 1 之前装第三方模块 pip3 install django -i 镜像仓库 ​ # 2 一劳永逸--》整点配置,以后安装模块,自动去配置好的源下载 ###windows 1、文件管理器文件路径地址栏敲:%APPDATA% 回车,快速进入 C:\Users\电脑用…

Sentinel-1 Level 1数据处理的详细算法定义(三)

《Sentinel-1 Level 1数据处理的详细算法定义》文档定义和描述了Sentinel-1实现的Level 1处理算法和方程,以便生成Level 1产品。这些算法适用于Sentinel-1的Stripmap、Interferometric Wide-swath (IW)、Extra-wide-swath (EW)和Wave模式。 今天介绍的内容如下&…

vscode远程调试python代码

第一步: vscode设置 vscode也支持通过remote的方法连接我们在命令行中发起的debug server。首先我们要配置一下debug的config。 还是点击VSCode侧边栏的“Run and Debug”(运行和调试),单击"create a lauch.json file" 第二步&a…

创建React 项目的几种方式

①.react自带脚手架 使用步骤: 1、下载 npm i create-react-app -g 2、创建项目命令: create-react-app 项目名称 ②.Vite构建工具创建react步骤:(推荐) 方法一: 1、yarn create vite 2、后续根据提示步…

系统架构设计师 - 数学与经济管理

数学与经济管理 数学与经济管理(1 - 2分)图论应用最小生成树最短路径网络与最大流量 ★ 运筹方法关键路径法 ★ ★ ★线性规划 ★动态规划 ★ ★ ★排队论预测与决策 ★预测 - 博弈论决策 数学建模 ★ ★ 大家好呀!我是小笙,本章我…

线程安全(有点乱哈)

1.多个进程访问共享资源,通过上锁保证数据安全 1.2锁的宏观分类方式是悲观锁和乐观锁 1.3悲观锁和乐观锁 悲观锁:拿数据上锁‘ 举例:synchronzied 乐观锁:每次拿数据的时候不会上锁,更新数据,比较下版…

抖音机构号授权矩阵系统源码:打造自媒体帝国的新利器

在自媒体风起云涌的时代,抖音作为短视频领域的佼佼者,早已成为内容创作者们争相入驻的热门平台。然而,随着竞争加剧,如何在这场流量大战中脱颖而出,成为每一位自媒体人不得不面对的课题。今天,我们将带您深…

MySQL性能优化篇之SQL语句优化

目录 向数据库请求不需要的数据查询不需要的记录总是返回全部的列 MySQL扫描了额外的行扫描的行数和返回的行数行访问类型也要注意extra列的信息优化扫描行数过多的建议 重构查询方式一个复杂的查询还是多个简单的查询切分查询 常用的查询技巧使用内连接而不是外连接优化关联查…

防火墙一些有关知识

防火墙概述 防火墙核心任务 控制和防护 如何发挥功能 防火墙通过安全策略识别列两并做出相应动作。和ACL一样,所以防火墙本质就是ACL 防火墙分类 按物理特性划分 软件防火墙:电脑带的防火墙 硬件防火墙:设备,这个设备做的就…

深度学习之网络构建

目标 选择合适的神经网络 卷积神经网络(CNN):我们处理图片、视频一般选择CNN 循环神经网络(RNN):我们处理时序数据一般选择RNN 超参数的设置 为什么训练的模型的错误率居高不下 如何调测出最优的超参数 …

继电器实现直流电机正反转

有关继电器的使用方法,首先介绍了继电器的内部工作原理,然后介绍了两只继电器组成的正反转电路,以及用继电器实现直流电机正反转的具体方法,供大家学习参考。 继电器实现直流电机正反转 1、继电器内部原理 线圈断电时公共与常闭…

华贝甄选商业生态,成功背后的秘诀在这里

华贝甄选通过其独特的商业生态模式,不仅展示了对电子商城业务的深刻理解,更体现了对市场趋势和政策导向的敏锐把握。其S2B2C2B的用户交互模式,无疑是对传统商业模式的一次创新,它融合了供应链、企业和消费者之间的紧密联系&#x…

javaweb学习day4--《maven篇》maven的项目创建及其依赖管理详解(基于最新版本的idea)

一、前言 javaweb学习的第四天,不知道今天你们是否坚持下去了。今天学习到的是maven,温馨提示一下,idea中自带maven不用自行去下载了。前期的配置工作太过复杂了,小编感觉自己能力有限并不能将其讲的太清楚,还请大家在…

c小红的图上划分(牛客127)

题意: 有一个无向图,有 n 个点 m 条边,q 个询问,每次给出 L,R,求将图划分为至少 L 个连通块,最多 R个连通块的最大划分价值,若不可划分输出 "NO ANSWER"。 图的划分定义为将图划分为一…

如何将本地仓库中的文件推送到远程git服务器

第一步:进入所在项目,右击打开"Git Bash Here" 第二步:git config --global user.email "18351810763163.com" // 输入你的名称 第三步:git config --global user.name "chenliang-sam&quo…

如何将一个2D数组切分成多个块

要将一个2D数组切分成多个块,可以考虑使用以下几种方法,具体取决于如何定义块的划分规则和需求。如果你希望将2D数组均匀地切分成固定大小的小块,可以使用简单的循环和切片操作。 1、问题背景 Python 中, 如果有一个 raw 数据文件&#xff0…

SSM社区物业管理系统-计算机毕业设计源码91276

摘要 随着城市化进程的加快,居民社区的规模和数量不断增长,传统的人工管理方式已经无法满足管理需求。借助信息技术和互联网应用,社区物业管理系统可以实现物业管理信息的集中化、自动化和便捷化,提供全方位的管理和服务支持。社区…

智慧水利的变革之路:如何通过大数据、物联网和人工智能构建高效、智能、可持续的水利管理新模式

目录 一、引言:智慧水利的时代背景与意义 二、大数据:水利管理的数据基石 (一)数据收集与整合 (二)数据分析与挖掘 三、物联网:水利管理的感知神经 (一)智能感知与监…

ONLYOFFICE 8.1版本版本桌面编辑器测评

ONLYOFFICE官网链接:ONLYOFFICE - 企业在线办公应用软件 | ONLYOFFICE ONLYOFFICE在线办公套件:在线办公套件 | ONLYOFFICE ONLYOFFICE在线PDF编辑器、阅读器和转换器:在线PDF查看器和转换器 | ONLYOFFICE ONLYOFFICE 8.1版本桌面编辑器是…