生产环境中秒杀接口并发量剧增与负载优化策略探讨


✨✨谢谢大家捧场,祝屏幕前的小伙伴们每天都有好运相伴左右,一定要天天开心哦!✨✨ 
🎈🎈作者主页: 喔的嘛呀🎈🎈

目录

引言

1. 实施限流措施

1.1 令牌桶算法:

1.2 漏桶算法:

1.3 使用限流框架:

2. 优化数据库操作

2.1. 索引优化

2.2. 批量操作减少交互次数:

2.3. 避免全表扫描:

2.4使用InnoDB引擎:

2.5优化事务范围:

3. 使用缓存技术

3.1. 选择合适的缓存系统:

3.2. 缓存热门商品信息:

3.3. 缓存热门商品列表:

3.4. 使用缓存刷新策略:

3.5. 使用缓存预热:

4. 异步处理订单

4.1. 选择合适的消息队列系统:

4.2. 订单生成异步化:

4.3. 异步处理订单消息监听:

4.4. 保证消息的可靠性:

4.5. 处理失败消息的重试和补偿:

5. 水平扩展

5.1. 负载均衡:

5.2. 横向添加服务器节点:

5.3. 数据库水平分片:

5.4. 服务的横向拆分:

5.5. 监控和自动化:

5.6. 弹性计算和容灾:

6、 灰度发布和回滚

7、总结


引言

在生产环境中,秒杀活动通常是一项高并发的任务,因为大量用户在同一时刻竞相购买限量商品。这种高并发可能导致服务器压力剧增,造成系统崩溃或响应缓慢。为了解决这一问题,我们可以采用一系列优化措施,下面详细介绍一下

1. 实施限流措施

实施限流措施是在高并发场景下保护系统稳定性的关键步骤。限流可以控制请求的并发访问量,避免系统因瞬时高并发而崩溃。以下是一些实施限流措施的方法:

1.1 令牌桶算法:

令牌桶算法是一种常用的限流算法,它基于令牌桶的概念,系统以固定的速率往令牌桶中放入令牌,而接口访问时需要获取令牌,没有令牌的请求将被拒绝。

public class TokenBucket {private int capacity; // 桶的容量private int tokens;   // 当前令牌数量private long lastRefillTime; // 上次令牌刷新时间public TokenBucket(int capacity, int tokensPerSecond) {this.capacity = capacity;this.tokens = capacity;this.lastRefillTime = System.currentTimeMillis();scheduleRefill(tokensPerSecond);}public synchronized boolean tryConsume() {refill();if (tokens > 0) {tokens--;return true;} else {return false;}}private void refill() {long now = System.currentTimeMillis();if (now > lastRefillTime) {long elapsedTime = now - lastRefillTime;int tokensToAdd = (int) (elapsedTime / 1000); // 每秒放入令牌tokens = Math.min(capacity, tokens + tokensToAdd);lastRefillTime = now;}}private void scheduleRefill(int tokensPerSecond) {ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);scheduler.scheduleAtFixedRate(() -> refill(), 1, 1, TimeUnit.SECONDS);}
}

1.2 漏桶算法:

漏桶算法是另一种常用的限流算法,它模拟一个漏桶,请求以恒定的速度流入漏桶,漏桶以固定的速度漏水。如果桶满了,多余的请求将被丢弃或排队。

public class LeakyBucket {private int capacity; // 桶的容量private int water;    // 当前水量private long lastLeakTime; // 上次漏水时间public LeakyBucket(int capacity, int leaksPerSecond) {this.capacity = capacity;this.water = 0;this.lastLeakTime = System.currentTimeMillis();scheduleLeak(leaksPerSecond);}public synchronized boolean tryConsume() {leak();if (water > 0) {water--;return true;} else {return false;}}private void leak() {long now = System.currentTimeMillis();if (now > lastLeakTime) {long elapsedTime = now - lastLeakTime;int leaks = (int) (elapsedTime / 1000); // 每秒漏水water = Math.max(0, water - leaks);lastLeakTime = now;}}private void scheduleLeak(int leaksPerSecond) {ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);scheduler.scheduleAtFixedRate(() -> leak(), 1, 1, TimeUnit.SECONDS);}
}

1.3 使用限流框架:

除了手动实现限流算法外,也可以使用一些成熟的限流框架,如Guava RateLimiter、Spring Cloud Gateway等,它们提供了简便的接口和配置,可以快速实施限流措施。

// 使用Guava RateLimiter
RateLimiter rateLimiter = RateLimiter.create(10.0); // 每秒放入10个令牌
if (rateLimiter.tryAcquire()) {// 执行业务逻辑
} else {// 请求被限流
}

限流的选择要根据系统的实际情况、业务需求和性能测试来确定。限流是保护系统稳定性的有效手段,但需要注意的是,过于严格的限流可能影响到用户体验,因此需要在系统性能和用户体验之间找到平衡。

2. 优化数据库操作

优化数据库操作是提高系统性能的重要一环,尤其在高并发的秒杀场景下,数据库操作的效率直接影响系统的响应速度。以下是一些优化数据库操作的方法:

2.1. 索引优化

确保数据库表的关键字段上建立了适当的索引,特别是在经常用于查询和更新的字段上。索引可以加速查询操作。

-- 为product表的id和stock字段创建索引
CREATE INDEX idx_product_id ON product(id);
CREATE INDEX idx_product_stock ON product(stock);

2.2. 批量操作减少交互次数:

减少与数据库的交互次数,使用批量操作来提高性能,特别是在更新库存等操作时。

// 批量更新库存
public class ProductService {public void updateProductStockBatch(List<Integer> productIds) {try (Connection connection = dataSource.getConnection();PreparedStatement statement = connection.prepareStatement("UPDATE product SET stock = stock - 1 WHERE id = ?")) {for (int productId : productIds) {statement.setInt(1, productId);statement.addBatch();}statement.executeBatch();} catch (SQLException e) {// 异常处理...}}
}

2.3. 避免全表扫描:

使用合适的查询条件和索引,避免全表扫描,提高查询效率。

// 使用索引进行查询和更新
public class ProductService {public Product getSeckillProductInfo(int productId) {String sql = "SELECT * FROM product WHERE id = ? FOR UPDATE";// 执行查询...}public boolean updateProductStock(int productId) {String sql = "UPDATE product SET stock = stock - 1 WHERE id = ?";// 执行更新...}
}

2.4使用InnoDB引擎:

InnoDB引擎支持行级锁和事务,适合高并发的秒杀场景。

-- 将商品表的引擎设置为InnoDB
ALTER TABLE product ENGINE=InnoDB;

2.5优化事务范围:

减小事务的范围,尽量在生成订单等操作之前提交事务,减少锁的持有时间。

// 代码示例(优化事务范围)
public class SeckillService {@Transactionalpublic void handleSeckillRequest() {// 处理秒杀请求逻辑// ...// 生成订单数据OrderData orderData = generateOrderData();// 提交事务orderService.createOrder(orderData);}
}

以上是在数据库层面进行秒杀接口的深度优化的一些建议。这些建议包括索引优化、数据库引擎选择、事务控制、查询优化等方面(这只是数据库优化其中的几点),通过合理的配置和优化,可以提高系统的并发处理能力,确保秒杀活动的顺利进行。

3. 使用缓存技术

增加缓存层,将热门数据缓存起来,减轻数据库压力,提高读取速度。

3.1. 选择合适的缓存系统:

选择适合自己业务场景的缓存系统,常见的包括:

  • Redis: 支持多种数据结构,适用于缓存和计数器等场景。
  • Memcached: 简单高效,适用于简单的键值缓存。
  • Ehcache: Java本地缓存库,适用于单节点缓存。

3.2. 缓存热门商品信息:

将热门商品信息缓存在缓存中,避免每次请求都访问数据库。

// 商品信息缓存
public class ProductCache {private static final Cache<Integer, Product> productCache = Caffeine.newBuilder().maximumSize(1000) // 缓存容量.expireAfterWrite(10, TimeUnit.MINUTES) // 缓存过期时间.build();public Product getSeckillProductInfo(int productId) {Product product = productCache.get(productId, key -> ProductDAO.get(productId));return product;}
}

3.3. 缓存热门商品列表:

缓存热门商品列表,避免频繁查询数据库。

// 热门商品列表缓存
public class PopularProductCache {private static final Cache<String, List<Product>> popularProductCache = Caffeine.newBuilder().maximumSize(10) // 缓存容量.expireAfterWrite(5, TimeUnit.MINUTES) // 缓存过期时间.build();public List<Product> getPopularProducts() {return popularProductCache.get("popular", key -> ProductDAO.getPopularProducts());}
}

3.4. 使用缓存刷新策略:

设置合适的缓存刷新策略,确保缓存中的数据保持与数据库一致。

// 商品信息缓存刷新策略
public class ProductCache {private static final Cache<Integer, Product> productCache = Caffeine.newBuilder().maximumSize(1000) // 缓存容量.expireAfterWrite(10, TimeUnit.MINUTES) // 缓存过期时间.refreshAfterWrite(1, TimeUnit.MINUTES) // 刷新间隔.build();public Product getSeckillProductInfo(int productId) {return productCache.get(productId, key -> refreshProductInfo(productId));}private Product refreshProductInfo(int productId) {// 从数据库中重新加载商品信息return ProductDAO.get(productId);}
}

3.5. 使用缓存预热:

在系统启动时,预先加载热门数据到缓存中,提高系统初始性能。

// 缓存预热
public class CacheWarmUp {@PostConstructpublic void warmUpCache() {// 预先加载热门商品信息到缓存中List<Integer> popularProductIds = ProductDAO.getPopularProductIds();for (int productId : popularProductIds) {ProductCache.getSeckillProductInfo(productId);}}
}

以上是一些使用缓存技术的具体建议,通过合理选择缓存系统、缓存热门数据、设置刷新策略和预热缓存,可以显著提高系统的读取速度,降低对数据库的压力,特别在高并发的秒杀场景下,是确保系统稳定性和性能的重要手段。

4. 异步处理订单

在高并发的秒杀场景下,异步处理订单是一种有效的策略,可以降低同步处理的压力,提高系统的吞吐量。以下是一些关于如何异步处理订单的具体建议:

4.1. 选择合适的消息队列系统:

选择适合业务需求的消息队列系统,常见的包括:

  • RabbitMQ: 稳定可靠,支持多种消息模型。
  • Kafka: 高吞吐量,适用于分布式系统。
  • ActiveMQ: 开源的JMS消息队列,支持多种传输协议。

4.2. 订单生成异步化:

将订单生成过程异步化,将订单信息发送到消息队列,由后台异步处理。

// 订单生成异步化
public class OrderService {@Autowiredprivate RabbitTemplate rabbitTemplate;public void createOrderAsync(OrderData orderData) {rabbitTemplate.convertAndSend("order-exchange", "order.create", orderData);}
}

4.3. 异步处理订单消息监听:

设置订单处理的消息监听器,监听消息队列中的订单消息,并进行处理。

// 异步处理订单消息监听
@Component
public class OrderMessageListener {@RabbitListener(queues = "order.create.queue")public void handleMessage(OrderData orderData) {// 处理订单逻辑// ...}
}

4.4. 保证消息的可靠性:

设置消息队列的确认机制,保证消息的可靠性投递。

// RabbitMQ消息确认机制配置
@Configuration
public class RabbitMQConfig {@Beanpublic RabbitTemplate rabbitTemplate(ConnectionFactory connectionFactory) {RabbitTemplate rabbitTemplate = new RabbitTemplate(connectionFactory);rabbitTemplate.setConfirmCallback((correlationData, ack, cause) -> {if (!ack) {// 消息发送失败的处理逻辑}});return rabbitTemplate;}
}

4.5. 处理失败消息的重试和补偿:

设置消息队列的重试机制和补偿机制,确保订单处理失败时能够及时重试或进行补偿。

// RabbitMQ消息重试和补偿配置
@Configuration
public class RabbitMQConfig {@Beanpublic SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory(ConnectionFactory connectionFactory) {SimpleRabbitListenerContainerFactory factory = new SimpleRabbitListenerContainerFactory();factory.setConnectionFactory(connectionFactory);factory.setConcurrentConsumers(3); // 并发消费者数量factory.setMaxConcurrentConsumers(10); // 最大并发消费者数量factory.setAcknowledgeMode(AcknowledgeMode.MANUAL); // 手动确认模式factory.setDefaultRequeueRejected(false); // 不重新入队列factory.setErrorHandler(new ConditionalRejectingErrorHandler(new CustomFatalExceptionStrategy())); // 自定义异常处理策略factory.setRetryTemplate(new RetryTemplate()); // 重试模板return factory;}
}

通过异步处理订单,可以将订单生成和处理过程解耦,提高系统的吞吐量和性能。选择合适的消息队列系统、确保消息的可靠性、设置消息的监听器和确认机制,以及处理失败消息的重试和补偿,都是确保异步处理订单稳定可靠的关键步骤。

5. 水平扩展

 考虑对系统进行水平扩展,通过增加服务器节点来分担负载。

5.1. 负载均衡:

使用负载均衡器,将流量均匀分发到多个服务器节点上,避免单一节点负载过重。

  • 硬件负载均衡器: 使用专门的硬件设备,如F5、Citrix等。
  • 软件负载均衡器: 使用软件实现,如Nginx、HAProxy等。

5.2. 横向添加服务器节点:

逐步增加服务器节点,将请求分发到不同的节点上,实现水平扩展。

  • 云服务提供商: 使用云服务提供商的弹性伸缩功能,根据需求动态增加或减少节点。
  • 容器化: 使用容器化技术,如Docker、Kubernetes等,方便快速部署和扩展。

5.3. 数据库水平分片:

对于数据库,考虑水平分片,将数据分布在不同的数据库节点上,减轻数据库压力。

  • 分库分表: 将数据按照一定规则划分到不同的数据库或表中。
  • 数据库读写分离: 将读和写分布在不同的数据库节点上,提高数据库并发能力。

5.4. 服务的横向拆分:

将系统中的服务进行横向拆分,拆分成多个微服务,每个微服务可以独立部署和扩展。

  • 微服务架构: 使用微服务架构,如Spring Cloud、Dubbo等,将系统拆分成多个小服务。
  • API网关: 使用API网关来统一管理和分发请求到不同的微服务。

5.5. 监控和自动化:

确保系统的监控和自动化机制,及时发现节点故障和负载情况,自动进行水平扩展。

  • 监控工具: 使用监控工具,如Prometheus、Grafana等,实时监测系统的状态。
  • 自动化脚本: 编写自动化脚本,根据负载情况自动进行节点的增加或减少。

5.6. 弹性计算和容灾:

考虑系统的弹性计算和容灾能力,确保在节点故障时系统依然可用。

  • 弹性伸缩: 根据负载情况动态调整节点数量,确保系统弹性。
  • 容灾方案: 设计容灾方案,保证系统在某个节点或区域发生故障时能够继续提供服务。

通过以上水平扩展的方法,可以有效应对系统负载的增加,提高系统的可用性、性能和弹性。在实际应用中,根据具体业务需求和系统特点选择和实施这些扩展方法。

6、 灰度发布和回滚

在采取一些重要的优化或改动时,通过灰度发布逐步验证新的方案,并建立回滚机制,确保在出现问题时能够迅速回退。

7、总结

这些方案的选择取决于具体的业务场景、系统架构和实际问题的症结。通常需要进行系统性能测试,综合考虑系统的可伸缩性、容错性和稳定性,寻找出一个最适合当前情况的综合性解决方案。

祝屏幕前的帅哥美女们,每天都好运爆棚!笑口常开!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/43777.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

红酒知识百科:从入门到精通

红酒&#xff0c;这个深邃而迷人的世界&#xff0c;充满了无尽的知识与奥秘。从葡萄的选择、酿造工艺&#xff0c;到品鉴技巧&#xff0c;每一步都蕴藏着深厚的文化底蕴和精细的技艺。今天&#xff0c;就让我们一起踏上这场红酒知识之旅&#xff0c;从入门开始&#xff0c;逐步…

gpt-4o看图说话-根据图片回答问题

问题&#xff1a;中国的人口老龄化究竟有多严重&#xff1f; 代码下实现如下&#xff1a;&#xff08;直接调用openai的chat接口&#xff09; import os import base64 import requests def encode_image(image_path): """ 对图片文件进行 Base64 编码 输入…

【刷题汇总 -- 求最小公倍数、数组中的最长连续子序列、字母收集】

C日常刷题积累 今日刷题汇总 - day0081、求最小公倍数1.1、题目1.2、思路1.3、程序实现 -- 穷举法1.2、程序实现 -- 辗转相除法 2、数组中的最长连续子序列2.1、题目2.2、思路2.3、程序实现 3、字母收集3.1、题目3.2、思路3.3、程序实现 4、题目链接 今日刷题汇总 - day008 1、…

Windows C++ vs2022环境中下载、安装和使用osmesa

第一步&#xff1a;安装 MinGW-w64 请参考这篇文章进行安装&#xff1a; 在Windows中安装MinGW-w64最新版本 第二步&#xff1a;安装DirectX SDK 请参考这篇文章进行安装&#xff1a; 下载安装Microsoft DirectX SDK(June 2010) 第三步&#xff1a;安装Windows SDK 请参考这篇…

oracle索引字段存储数据过长,导致索引失效

1&#xff1a;短位数据&#xff0c;索引生效 2&#xff1a;长位索引&#xff0c;索引不生效 此问题发现于6月中旬&#xff0c;线上问题优化。引以为戒。 解决&#xff1a; 并未解决索引不生效问题&#xff0c; 但是基于优化查询&#xff0c;是的查询保持毫秒级

第一个基于FISCOBCOS的前后端项目(发行转账)

本文旨在介绍一个简单的基于fiscobcos的前后端网站应用。Springbootjs前后端不分离。 所使用到的合约也是一个最基本的。首先您需要知道的是完整项目分为三部分&#xff0c;1是区块链平台webase搭建&#xff08;此项目使用节点前置webase-front即可&#xff09;&#xff0c;2是…

语义分割和实例分割区别?

语义分割&#xff1a;将图像中的每个像素分配给其对应的语义类别&#xff0c;其主要针对于像素&#xff0c;或者说它是像素级别的图像分割方法。&#xff1a;语义分割的目的是为了从像素级别理解图像的内容&#xff0c;并为图像中的每个像素分配一个对象类。 实例分割&#xf…

DMA方式的知识点笔记

苏泽 “弃工从研”的路上很孤独&#xff0c;于是我记下了些许笔记相伴&#xff0c;希望能够帮助到大家 目录 1. DMA基本概念 2. DMA传送过程 易错点 DMA控制器操作流程 3. DMA传送方式 这是单总线的结果 &#xff08;CPU说了算 所以不会产生于CPU的冲突&#xff09; 这…

新浪API系列:支付API打造无缝支付体验,畅享便利生活(3)

在当今数字化时代&#xff0c;支付功能已经成为各类应用和平台的必备要素之一。作为开发者&#xff0c;要构建出安全、便捷的支付解决方案&#xff0c;新浪支付API是你不可或缺的利器。新浪支付API提供了全面而强大的接口和功能&#xff0c;帮助开发者轻松实现在线支付的集成和…

软件开发面试题(C#语言,.NET框架)

1. 解释什么是委托&#xff08;Delegate&#xff09;&#xff0c;并举例说明它在C#中的用法。 委托是一种引用类型&#xff0c;它可以用于封装一个或多个方法。委托对象可以像方法一样调用&#xff0c;甚至可以用于创建事件处理程序。委托是C#中实现事件和回调函数的重要机制。…

【PyTorch][chapter 26][李宏毅深度学习][attention-1]

前言&#xff1a; attention 在自然语言处理&#xff0c;声音处理里面是一个很重要的技巧. attention 要解决的是输入的向量长度不定. 根据输入输出的不同,分为三种场景&#xff1a; 输入N个向量&#xff0c;输出N个向量,这是本章的重点 输入N个向量&#xff0c;输出向量不定 输…

施罗德数列SQL实现

在组合数学中,施罗德数用来描述从(0,0)到(n,n)的格路中,只能使用(1,0)、(0,1)、(1,1)三种移动方式,始终位于对角线下方且不越过对角线的路径数 DECLARE n INT 10 DECLARE i INT DECLARE rst INT DECLARE old INT1CREATE TABLE #rst (i INT ,rst int )INSERT INTO #rst values(…

3-7 使用深度学习解决温度即示数问题

3-7 使用深度学习解决温度即示数问题 直接上代码 %matplotlib inline import matplotlib.pyplot as plt import numpy as np import torch torch.set_printoptions(edgeitems2, linewidth75)设置Jupyter Notebook在单元格中内嵌显示图像&#xff0c;导入所需库并设置PyTorch的…

阿里发布大模型发布图结构长文本处理智能体,超越GPT-4-128k

随着大语言模型的发展&#xff0c;处理长文本的能力成为了一个重要挑战。虽然有许多方法试图解决这个问题&#xff0c;但都存在不同程度的局限性。最近&#xff0c;阿里巴巴的研究团队提出了一个名为GraphReader的新方法&#xff0c;通过将长文本组织成图结构&#xff0c;并利用…

2,区块链、数字货币及其应用场景(react+区块链实战)

2&#xff0c;区块链、数字货币及其应用场景&#xff08;react区块链实战&#xff09; 一、什么是区块链&#xff1f;1 ibloackchain&#xff08;1&#xff09;安装ibloackchain&#xff08;2&#xff09;Blance查询余额&#xff08;3&#xff09;Mine挖矿&#xff08;4&#x…

JavaScript中的拷贝技术探秘:浅拷贝与深拷贝的奥秘

最新技术资源&#xff08;建议收藏&#xff09; https://www.grapecity.com.cn/resources/ 前言 JavaScript中的浅拷贝和深拷贝是非常重要的概念&#xff0c;它们在处理对象和数组时具有不同的作用。在编程中&#xff0c;经常需要复制数据以便进行各种操作&#xff0c;但必须注…

小波与傅里叶变换的对比(Python)

直接上代码&#xff0c;理论可以去知乎看。 #Import necessary libraries %matplotlib inline import numpy as np import matplotlib.pyplot as plt import seaborn as snsimport pywt from scipy.ndimage import gaussian_filter1d from scipy.signal import chirp import m…

基于 sftp 的 NAS (局域网文件存储服务器)

局域网 NAS (文件存储服务器) 的基本功能有: 能够存储文件, 同时能够通过多个设备访问 (上传/下载) 文件. 这些功能通过 sftp 可以实现. sftp 是基于 SSH 的文件传输协议, SSH 全程加密传输, 使用 公钥 认证 (不使用密码/口令), 能够提供很高的安全性. 上文说到, 在 LVM 和 bt…

谷粒商城-个人笔记(集群部署篇三)

前言 ​学习视频&#xff1a;​Java项目《谷粒商城》架构师级Java项目实战&#xff0c;对标阿里P6-P7&#xff0c;全网最强​学习文档&#xff1a; 谷粒商城-个人笔记(基础篇一)谷粒商城-个人笔记(基础篇二)谷粒商城-个人笔记(基础篇三)谷粒商城-个人笔记(高级篇一)谷粒商城-个…

古建筑倾斜在线监测系统:科技守护历史的创新实践

​ ​​在文化遗产保护的广阔领域中&#xff0c;古建筑的健康监测占据着举足轻重的地位。然而&#xff0c;传统的监测方法往往受限于布线复杂、安装难度大以及对古建筑本体可能造成的伤害等问题。近年来&#xff0c;一种新型的古建筑倾斜在线监测系统应运而生&#xff0c;它…