Python酷库之旅-第三方库Pandas(010)

目录

一、用法精讲

22、pandas.read_hdf函数

22-1、语法

22-2、参数

22-3、功能

22-4、返回值

22-5、说明

22-6、用法

22-6-1、数据准备

22-6-2、代码示例

22-6-3、结果输出

23、pandas.HDFStore.put方法

23-1、语法

23-2、参数

23-3、功能

23-4、返回值

23-5、说明

23-6、用法

23-6-1、数据准备

23-6-2、代码示例

23-6-3、结果输出 

24、pandas.HDFStore.append方法

24-1、语法

24-2、参数

24-3、功能

24-4、返回值

24-5、说明

24-6、用法

24-6-1、数据准备

24-6-2、代码示例

24-6-3、结果输出 

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

22、pandas.read_hdf函数
22-1、语法
# 22、pandas.read_hdf函数
pandas.read_hdf(path_or_buf, key=None, mode='r', errors='strict', where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None, **kwargs)
Read from the store, close it if we opened it.Retrieve pandas object stored in file, optionally based on where criteria.WarningPandas uses PyTables for reading and writing HDF5 files, which allows serializing object-dtype data with pickle when using the “fixed” format. Loading pickled data received from untrusted sources can be unsafe.See: https://docs.python.org/3/library/pickle.html for more.Parameters:
path_or_bufstr, path object, pandas.HDFStore
Any valid string path is acceptable. Only supports the local file system, remote URLs and file-like objects are not supported.If you want to pass in a path object, pandas accepts any os.PathLike.Alternatively, pandas accepts an open pandas.HDFStore object.keyobject, optional
The group identifier in the store. Can be omitted if the HDF file contains a single pandas object.mode{‘r’, ‘r+’, ‘a’}, default ‘r’
Mode to use when opening the file. Ignored if path_or_buf is a pandas.HDFStore. Default is ‘r’.errorsstr, default ‘strict’
Specifies how encoding and decoding errors are to be handled. See the errors argument for open() for a full list of options.wherelist, optional
A list of Term (or convertible) objects.startint, optional
Row number to start selection.stopint, optional
Row number to stop selection.columnslist, optional
A list of columns names to return.iteratorbool, optional
Return an iterator object.chunksizeint, optional
Number of rows to include in an iteration when using an iterator.**kwargs
Additional keyword arguments passed to HDFStore.Returns:
object
The selected object. Return type depends on the object stored.
22-2、参数

22-2-1、path_or_buf(必须)字符串或文件样对象(如文件句柄或类似文件的对象),指定要读取的HDF5文件的路径或文件对象。

22-2-2、key(可选,默认值为None)字符串或列表,指定要从HDF5文件中读取的键(即数据集/表的名称)。如果文件包含多个数据集,则需要使用此参数来指定要读取哪一个;如果未指定,则尝试读取默认的数据集(如果存在)。

22-2-3、mode(可选,默认值为'r')字符串,指定文件打开模式。其他可能的值包括'r+'(读写模式),但注意在使用pandas时,通常不需要写模式,因为read_hdf专门用于读取数据。

22-2-4、errors(可选,默认值为'strict')字符串,指定错误处理模式。默认为'strict',表示如果发生错误则抛出异常,其他选项包括'ignore',表示忽略错误。

22-2-5、where(可选,默认值为None)字符串或表达式,用于在读取数据之前对数据进行过滤,这可以是一个字符串表达式,Pandas会尝试在读取数据时应用此表达式以筛选行。

22-2-6、start/stop(可选,默认值为None)用于指定要读取的行范围(基于0的索引),这可以用于分块读取大型数据集的一部分。

22-2-7、columns(可选,默认值为None)字符串或列表,指定要读取的列名列表。如果指定,则只读取这些列。

22-2-8、iterator(可选,默认值为False)布尔值,如果设置为True,则返回一个迭代器,该迭代器在每次迭代时返回下一块数据(由chunksize指定大小),这对于处理非常大的数据集非常有用,因为它允许逐个处理数据块而不是一次性将所有数据加载到内存中。

22-2-9、chunksize(可选,默认值为None)整数,当iterator=True时有效。指定每次迭代时返回的块的大小(以行为单位)。

22-2-10、**kwargs(可选)其他关键字参数,这些参数将被传递给底层的PyTables或HDFStore对象,这些参数通常用于控制更底层的HDF5文件操作,如压缩选项等。

22-3、功能

        从HDF5文件中读取数据。

22-4、返回值

22-4-1、DataFrame或Series:默认情况下,read_hdf返回一个Pandas DataFrame对象,该对象包含了从HDF5文件中读取的数据,如果HDF5数据集只包含一列,并且用户没有指定squeeze=False(尽管在read_hdf的典型用法中,squeeze参数不是直接暴露的,但在Pandas的其他读取函数中,如read_csv,squeeze可以用来控制单列数据的返回类型),则可能会返回一个Pandas Series对象。

22-4-2、迭代器:如果设置了iterator=True,则read_hdf返回一个迭代器,该迭代器在每次迭代时返回下一块数据(由chunksize指定大小),这允许用户以流式方式处理大型数据集,减少内存使用。

22-5、说明

        HDF5(Hierarchical Data Format version 5)是一种用于存储和组织大量数据的文件格式,它特别适合于存储和组织大量科学数据。

22-6、用法
22-6-1、数据准备
# 22、pandas.read_hdf函数
# 22-1、创建.h5文件example.h5
import pandas as pd
import numpy as np
# 创建一个示例DataFrame
data = {'column1': np.random.randint(0, 100, size=100),'column2': np.random.random(size=100),'column3': np.random.choice(['A', 'B', 'C', 'D'], size=100)
}
df = pd.DataFrame(data)
# 定义HDF5文件路径和要保存的key
hdf5_file_path = 'example.h5'
key = 'dataset1'
try:# 使用to_hdf函数将DataFrame写入HDF5文件df.to_hdf(hdf5_file_path, key=key, mode='w', format='table', complevel=9, complib='blosc')print(f"数据已成功写入 {hdf5_file_path} 文件中的 {key} 数据集")# 验证写入的文件read_df = pd.read_hdf(hdf5_file_path, key=key)print("读取写入的数据:")print(read_df.head())
except Exception as e:print(f"发生错误: {e}")
22-6-2、代码示例
# 22、pandas.read_hdf函数
# 22-2、读取HDF5文件
import pandas as pd
# 定义HDF5文件路径和要读取的key
hdf5_file_path = 'example.h5'
key = 'dataset1'
# 使用read_hdf函数读取HDF5文件
try:df = pd.read_hdf(hdf5_file_path, key=key, mode='r', errors='strict', where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None)print("数据读取成功:")print(df)
except Exception as e:print(f"读取HDF5文件时发生错误: {e}")
22-6-3、结果输出
# 22、pandas.read_hdf函数
# 22-1、创建.h5文件example.h5
# 数据已成功写入 example.h5 文件中的 dataset1 数据集
# 读取写入的数据:
#    column1   column2 column3
# 0       40  0.530045       C
# 1       80  0.769853       C
# 2        9  0.437948       B
# 3       47  0.896335       D
# 4       12  0.017834       B# 22-2、读取HDF5文件
# 数据读取成功:
#     column1   column2 column3
# 0        40  0.530045       C
# 1        80  0.769853       C
# 2         9  0.437948       B
# 3        47  0.896335       D
# 4        12  0.017834       B
# ..      ...       ...     ...
# 95       70  0.172173       B
# 96        2  0.077893       C
# 97        4  0.825904       D
# 98       52  0.092274       A
# 99        7  0.210899       C
# 
# [100 rows x 3 columns]
23、pandas.HDFStore.put方法
23-1、语法
# 23、pandas.HDFStore.put函数
HDFStore.put(key, value, format=None, index=True, append=False, complib=None, complevel=None, min_itemsize=None, nan_rep=None, data_columns=None, encoding=None, errors='strict', track_times=True, dropna=False)
Store object in HDFStore.Parameters:
keystr
value{Series, DataFrame}
format‘fixed(f)|table(t)’, default is ‘fixed’
Format to use when storing object in HDFStore. Value can be one of:'fixed'
Fixed format. Fast writing/reading. Not-appendable, nor searchable.'table'
Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data.indexbool, default True
Write DataFrame index as a column.appendbool, default False
This will force Table format, append the input data to the existing.data_columnslist of columns or True, default None
List of columns to create as data columns, or True to use all columns. See here.encodingstr, default None
Provide an encoding for strings.track_timesbool, default True
Parameter is propagated to ‘create_table’ method of ‘PyTables’. If set to False it enables to have the same h5 files (same hashes) independent on creation time.dropnabool, default False, optional
Remove missing values.
23-2、参数

23-2-1、key(必须)字符串,表示要存储的数据在HDF5文件中的键(或路径),这个键用于后续从文件中检索数据。

23-2-2、value(必须)要存储的DataFrame或Series对象。

23-2-3、format(可选,默认值为None)字符串,指定存储格式。对于表格数据,通常使用'table',它支持更复杂的查询和数据操作。对于简单的数据,可以使用'fixed',但它不支持查询。如果为None,则根据value的类型自动选择。

23-2-4、index(可选,默认值为True)布尔值,指定是否将DataFrame的索引也存储在文件中。

23-2-5、append(可选,默认值为False)布尔值,如果为True,则尝试将数据追加到已存在的键下,而不是覆盖它,这要求format='table'。

23-2-6、complib(可选,默认值为None)字符串,指定用于压缩的库。pandas支持多种压缩库,如'zlib'、'lzo'、'blosc'等,选择合适的压缩库可以显著减少文件大小,但会增加存储和检索时间。如果为None,则不压缩。

23-2-7、complevel(可选,默认值为None)整数,指定压缩级别。级别越高,压缩率越高,但处理速度越慢,范围从0(无压缩)到9(最大压缩),如果complib为None,则此参数无效。

23-2-8、min_itemsize(可选,默认值为None)字典,指定列中字符串的最小存储大小(以字节为单位),这有助于避免在追加数据时截断字符串,键是列名,值是整数。

23-2-9、nan_rep(可选,默认值为None)用于表示NaN值的字符串。默认为None,表示使用HDF5的NaN表示。

23-2-10、data_columns(可选,默认值为None)列表或布尔值,指定哪些列应该作为数据列进行索引,以便可以进行快速查询。如果为True,则所有列都作为数据列;如果为False,则没有列作为数据列;如果为列表,则列表中的列名作为数据列。

23-2-11、encoding(可选,默认值为None)字符串,指定用于写入文件的编码,这对于存储包含非ASCII字符的字符串列很有用。

23-2-12、errors(可选,默认值为'strict')字符串,指定在编码或解码字符串时如何处理错误,'strict'表示抛出异常,'ignore'表示忽略错误,'replace'表示用占位符替换错误字符。

23-2-13、track_times(可选,默认值为True)布尔值,如果为True,则跟踪数据的创建和修改时间,并作为元数据存储在文件中,这对于数据版本控制可能很有用。

23-2-14、dropna(可选,默认值为False)布尔值,当与append=True一起使用时,如果为True,则在追加之前从DataFrame中删除包含NaN值的行。注意,这仅影响要追加的数据,不会影响已存储在文件中的数据。

23-3、功能

        将一个DataFrame或Series对象保存到HDF5文件中。

23-4、返回值

        没有直接的返回值,它的主要目的是将数据写入文件,而不是返回任何数据给调用者。

23-5、说明

        无      

23-6、用法
23-6-1、数据准备
23-6-2、代码示例
# 23、pandas.HDFStore.put方法
import pandas as pd
# 创建一个示例DataFrame
data = {'A': [1, 2, 3, 4, 5],'B': ['a', 'b', 'c', 'd', 'e'],'C': [True, False, True, False, True]
}
df = pd.DataFrame(data)
# 使用HDFStore保存DataFrame
with pd.HDFStore('example.h5') as store:# 使用put方法将数据保存到HDF5文件中# 这里我们指定键为'dataset1',格式为'table',并使用Blosc压缩store.put('dataset1', df, format='table', complib='blosc', complevel=9)
# 从HDF5文件中读取数据
with pd.HDFStore('example.h5') as store:# 使用get方法(或read_hdf函数,但在这里我们使用get来展示HDFStore的用法)# 根据键'dataset1'检索数据retrieved_df = store.get('dataset1')
# 显示检索到的DataFrame
print("Retrieved DataFrame:")
print(retrieved_df)
23-6-3、结果输出 
# 23、pandas.HDFStore.put方法
# Retrieved DataFrame:
#    A  B      C
# 0  1  a   True
# 1  2  b  False
# 2  3  c   True
# 3  4  d  False
# 4  5  e   True
24、pandas.HDFStore.append方法
24-1、语法
# 24、pandas.HDFStore.append方法
HDFStore.append(key, value, format=None, axes=None, index=True, append=True, complib=None, complevel=None, columns=None, min_itemsize=None, nan_rep=None, chunksize=None, expectedrows=None, dropna=None, data_columns=None, encoding=None, errors='strict')
Append to Table in file.Node must already exist and be Table format.Parameters:
keystr
value{Series, DataFrame}
format‘table’ is the default
Format to use when storing object in HDFStore. Value can be one of:'table'
Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data.indexbool, default True
Write DataFrame index as a column.appendbool, default True
Append the input data to the existing.data_columnslist of columns, or True, default None
List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See here.min_itemsizedict of columns that specify minimum str sizes
nan_repstr to use as str nan representation
chunksizesize to chunk the writing
expectedrowsexpected TOTAL row size of this table
encodingdefault None, provide an encoding for str
dropnabool, default False, optional
Do not write an ALL nan row to the store settable by the option ‘io.hdf.dropna_table’.
24-2、参数

24-2-1、key(必须)字符串,表示要追加数据的键(或路径)在HDF5文件中,如果键已存在且format='table',则数据将被追加到该键下的表中。

24-2-2、value(必须)要追加的DataFrame或Series对象。

24-2-3、 format(可选,默认值为None)字符串,指定存储格式。对于追加操作,通常使用'table',因为它支持追加和复杂查询。如果为None,则根据value的类型和已存在的数据集(如果有的话)来推断。

24-2-4、 axes(可选,默认值为None)已弃用,不推荐使用。

24-2-5、 index(可选,默认值为True)布尔值,指定是否将DataFrame的索引也追加到文件中。对于追加操作,这通常应该保持为True,以确保索引的连续性。

24-2-6、append(可选,默认值为True)布尔值,对于append方法本身来说,这个参数实际上总是True,因为它就是用来追加数据的。但在某些上下文中,这个参数可能用于区分追加和覆盖操作,但在这里不适用。

24-2-7、complib(可选,默认值为None)字符串,指定用于压缩的库。与put方法相同,pandas支持多种压缩库,如'zlib'、'lzo'、'blosc'等,选择合适的压缩库可以显著减少文件大小。

24-2-8、complevel(可选,默认值为None)整数,指定压缩级别。级别越高,压缩率越高,但处理速度越慢,范围从0(无压缩)到9(最大压缩)。

24-2-9、columns(可选,默认值为None)列表,指定要追加的列,如果为None,则追加所有列,这可以用于筛选要追加的列。

24-2-10、min_itemsize(可选,默认值为None)字典,指定列中字符串的最小存储大小(以字节为单位),这有助于避免在追加数据时截断字符串,键是列名,值是整数。

24-2-11、nan_rep(可选,默认值为None)用于表示NaN值的字符串。默认为None,表示使用HDF5的NaN表示。

24-2-12、chunksize(可选,默认值为None)整数,指定写入时的块大小(以行数为单位),这对于处理大数据集时减少内存使用很有用,如果为None,则一次性写入整个数据集。

24-2-13、expectedrows(可选,默认值为None)整数,预期要追加的行数,这可以帮助优化存储结构,但通常不是必需的。

24-2-14、dropna(可选,默认值为None)布尔值,如果为True,则在追加之前从DataFrame中删除包含NaN值的行。请注意,这与put方法中的dropna参数不同,后者在append=True时无效。

24-2-15、data_columns(可选,默认值为None)列表或布尔值,指定哪些列应该作为数据列进行索引,以便可以进行快速查询。如果为True,则所有列都作为数据列;如果为False,则没有列作为数据列;如果为列表,则列表中的列名作为数据列。

24-2-16、encoding(可选,默认值为None)字符串,指定用于写入文件的编码,这对于存储包含非ASCII字符的字符串列很有用。

24-2-17、errors(可选,默认值为'strict')字符串,指定在编码或解码字符串时如何处理错误,'strict'表示抛出异常,'ignore'表示忽略错误,'replace'表示用占位符替换错误字符。

24-3、功能

        用于将DataFrame或Series对象追加到已存在的HDF5文件中的数据集的一个方法。

24-4、返回值

        没有直接的返回值,它的主要作用是执行追加操作,并将数据写入到HDF5文件中。  

24-5、说明

        无

24-6、用法
24-6-1、数据准备
24-6-2、代码示例
# 24、pandas.HDFStore.append方法
import pandas as pd
# 创建一个示例DataFrame
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'c']})
df2 = pd.DataFrame({'A': [4, 5, 6], 'B': ['d', 'e', 'f']})
# 将df1保存到HDF5文件中
with pd.HDFStore('example.h5') as store:store.put('dataset', df1, format='table')
# 将df2追加到HDF5文件中的dataset数据集
with pd.HDFStore('example.h5') as store:store.append('dataset', df2, format='table', index=False)  # 假设我们不想追加索引
# 验证数据是否已追加
with pd.HDFStore('example.h5') as store:retrieved_df = store.get('dataset')
print(retrieved_df)
# 输出将显示包含df1和df2数据的完整DataFrame
24-6-3、结果输出 
# 24、pandas.HDFStore.append方法
#    A  B
# 0  1  a
# 1  2  b
# 2  3  c
# 0  4  d
# 1  5  e
# 2  6  f

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/42895.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】线程(轻量级进程)

目录 一、线程概念 二、线程特性 2.1 进程更加轻量化 2.2 线程的优点 2.3 线程的缺点 2.4 线程的异常 2.5 线程用途 三、进程和线程 四、线程控制 4.1 包含线程的编译链接 4.2 创建线程 4.3 获得线程自身的ID 4.4 线程终止 4.5 线程等待 4.6 线程分离 4.6 线程…

恢复出厂设置后如何从 iPhone 恢复数据

在 iPhone 恢复出厂设置后,所有数据都会被删除,并且 iPhone 将恢复到原始出厂设置,这意味着您的所有 iPhone 数据,包括照片、视频、联系人和应用程序都将消失。 幸运的是,如果您有备份可以恢复,这并不一定…

处理训练和验证数据集

📚博客主页:knighthood2001 ✨公众号:认知up吧 (目前正在带领大家一起提升认知,感兴趣可以来围观一下) 🎃知识星球:【认知up吧|成长|副业】介绍 ❤️如遇文章付费,可先看…

名企面试必问30题(二十五)—— 你手上还有没有其他的offer?

1.思路 主要考察你的意向度、时长竞争力和薪资空间,如果回答有offer,需要准备面试官追问还在考虑的原因。 2.参考解答 方式一: “目前我还没有其他的 offer。我一直非常专注于寻找真正适合我,并且能让我充分发挥自身能力和潜力的工…

spring boot(学习笔记第十二课)

spring boot(学习笔记第十二课) Spring Security内存认证&#xff0c;自定义认证表单 学习内容&#xff1a; Spring Security内存认证自定义认证表单 1. Spring Security内存认证 首先开始最简单的模式&#xff0c;内存认证。 加入spring security的依赖。<dependency>…

JDBC的基本认识

前提 在了解和学习JDBC之前&#xff0c;大家 已经学习过 java语言 和数据库的基本知识了&#xff0c;今天这篇博客的核心&#xff0c;就是告诉大家 &#xff0c;jdbc 是连接java编译器和数据库&#xff0c;是使用java对数据库进行操作的。 正文 JDBC简介 概念 JDBC的本质 1…

【软件分享】气象绘图软件Panoply

气象是大气中的物理现象&#xff0c;气象要素则是表明大气物理状况的要素&#xff0c;主要的气象要素有降水、风、气压、湿度等。为了研究气象要素在空间上的分布和运动状况&#xff0c;我们需要对气象要素进行空间上进行可视化&#xff0c;这个时候就需要气象领域的一些的绘图…

机械设计师转大模型岗位,我是抓住风口的猪,真能起飞!

大模型&#xff08;如人工智能、机器学习和深度学习模型&#xff09;可以通过提供先进的模拟、优化和自动化工具来赋能机械设计师。这些工具可以帮助机械设计师更高效地完成设计任务&#xff0c;优化产品设计&#xff0c;并提高创新速度。以下是机械设计师如何转行大模型&#…

Monaco 多行提示的实现方式

AI 代码助手最近太火爆&#xff0c;国内有模型厂商都有代码助手&#xff0c;代码助手是个比较典型的 AI 应用&#xff0c;主要看前端&#xff0c;后端的模型都差不多&#xff0c;国内外都有专门的代码模型。现在都是集中在 VSCode 和 Idea的插件&#xff0c;本文通过 Monaco 实…

uniapp实现光标闪烁(配合自己的键盘)

前言 因为公司业务需要&#xff0c;所以我们... 演示 其实就是Chat自动打字效果 代码 键盘请看这篇文件 <template> <view class"list"><view class"title"><text>手机号码</text></view><view class"ty…

CTFShow的RE题(四)

真的是签到 给的是无后缀的 zip 文件&#xff0c;解压发现需要密码&#xff0c;也没有提示&#xff0c;猜测可能是 zip 伪加密 &#xff08;走错厂了吧&#xff09; zip是否加密 首先就是看开头的6 &#xff0c;7byte&#xff0c;和中间 01 02 后的 5 &#xff0c;6byte 成功解…

Proxifier代理的其他妙用方法(内网渗透、反溯源、小程序公众号)

目录 配置说明 1. 通过Proxifier进行内网渗透 2. 通过Proxifier将VM虚拟机代理 3. 通过Proxifier进行小程序抓包 4. 补充 文章截取处 配置说明 配置其他的之前,要新增一个代理规则,如下: 127.0.0.1; ::1 让它 Direct (直接连接,即不走任何代理)即可 说明: ::1是I…

LabVIEW透视变换

透视变换概述源程序在www.bjcyck.com下载 透视变换是一种几何变换&#xff0c;用于对图像进行扭曲&#xff0c;使其看起来从不同角度拍摄。这在计算机视觉和图像处理领域非常重要&#xff0c;例如在投影校正和图像配准中。LabVIEW提供了强大的图像处理工具&#xff0c;利用其V…

南方CASS:地理信息系统的卓越之选

引言 作为一名长期从事地理信息系统&#xff08;GIS&#xff09;工作的专业人士&#xff0c;我对各类地理信息处理软件有着深入的了解和使用经验。其中&#xff0c;南方CASS&#xff08;南方测绘计算机辅助设计系统&#xff09;无疑是我最为推崇的一款软件。它不仅功能强大&am…

无人机群辅助边缘计算系统的任务卸载和资源分配联合优化

源自&#xff1a;系统工程与电子技术 作者&#xff1a;刘世豪 黄仰超 胡航 司江勃 韩蕙竹 安琪 注&#xff1a;若出现无法显示完全的情况&#xff0c;可 V 搜索“人工智能技术与咨询”查看完整文章 摘 要 为提升无人机群辅助边缘计算系统在负载不均衡场景下的性能, 构…

maxwell启动报错:Could not find first log file name in binary log index file

出现该问题是因为&#xff1a;maxwell 读取的是 mysql 的 binlog 日志&#xff0c;而配置文件中的两个值与 binlog 的最新值没有保持一致导致 1. 切换到maxwell的库 show master status;记住图片中的 FIle 和 Position 2. 修改maxwell的配置 SELECT * from positions p ;将…

Vue3 项目中 svg 图标的封装及使用

安装 npm install vite-plugin-svg-icons -D在 vite.config.ts 中配置插件&#xff1a; import { createSvgIconsPlugin} from vite-plugin-svg-icons; import path from path;plugins: [createSvgIconsPlugin({iconDirs: [path.resolve(process.cwd(), src/assets/icons)],s…

Java并发关键字

并发关键字 关键字: synchronized详解关键字: volatile详解关键字: final详解 # Synchronized可以作用在哪里? 对象锁方法锁类锁 # Synchronized本质上是通过什么保证线程安全的? 加锁和释放锁的原理 深入JVM看字节码&#xff0c;创建如下的代码&#xff1a; public cl…

探索TXE、TC、RXNE标志位在串口通信中的轮询与中断应用

浅谈一下STM32串口中断之TXE,TC,RXNE标志位 之前做一个项目&#xff0c;用到了串口中断&#xff0c;但是对TXE、TC和RXNE标志位的作用和使用方法不是很清楚&#xff0c;导致在调试过程中遇到了一些问题。通过查阅相关资料和实际操作&#xff0c;我对这三个标志位有了更深入的了…

【机器学习】——决策树模型

&#x1f4bb;博主现有专栏&#xff1a; C51单片机&#xff08;STC89C516&#xff09;&#xff0c;c语言&#xff0c;c&#xff0c;离散数学&#xff0c;算法设计与分析&#xff0c;数据结构&#xff0c;Python&#xff0c;Java基础&#xff0c;MySQL&#xff0c;linux&#xf…