【JavaEE】多线程进阶

在这里插入图片描述
🤡🤡🤡个人主页🤡🤡🤡
🤡🤡🤡JavaEE专栏🤡🤡🤡

文章目录

  • 1.锁策略
    • 1.1悲观锁和乐观锁
    • 1.2重量级锁和轻量级锁
    • 1.3自旋锁和挂起等待锁
    • 1.4可重入锁和不可重入锁
    • 1.5公平锁和非公平锁
    • 1.6互斥锁和读写锁
  • 2.synchronized的实现原理
    • 2.1实现过程
    • 2.2偏向锁
    • 2.3优化策略
      • 2.3.1锁升级
      • 2.3.2锁消除
      • 2.3.3锁粗化
  • 3.CAS
    • 3.1什么是CAS
    • 3.2CAS的应用
      • 3.2.1原子类
      • 3.2.2实现自旋锁
    • 3.3CAS的ABA问题
      • 3.3.1ABA问题
      • 3.3.2ABA引起的BUG
      • 3.3.3如何避免由ABA问题引起的BUG
  • 4.java.util.concurrent常见类
    • 4.1Callable接口
    • 4.2ReentrantLock类
      • 4.2.1发音
      • 4.2.2ReentrantLock的关键特性与功能
    • 4.3Semaphore类——信号量

1.锁策略

1.1悲观锁和乐观锁

区别:加锁的时候,预测当前锁冲突的概率是大还是小
悲观锁:预测当前锁冲突概率大,后续要做的工作往往就会更多,加锁的开销(时间,系统资源)就更大。
乐观锁:预测当前锁冲突概率小,后续要做的工作往往就会更少,加锁的开销(时间,系统资源)就更小。
注意:悲观锁往往通过内核来完成操作的,所以做的工作多,乐观锁往往通过用户完成操作的,所以做的工作少。

1.2重量级锁和轻量级锁

这两个锁和上述的悲观锁和乐观锁有着很大的关系,一般悲观锁就是重量级锁,因为悲观锁做的任务多,那么就需要很大的开销所以就是重量级锁,反之乐观锁做的任务少,那么开销就少那么就是轻量级锁。
注意:一般这两个锁和上述两个锁都混着用,之所以有区别是因为出发点不一样。

1.3自旋锁和挂起等待锁

自旋锁:锁未被释放之前,cpu会一直空转和忙等,但等锁被释放之后就会立马获取到锁,自旋锁是实现轻量级锁典型的案例。
挂起等待锁:当出现锁冲突,那么要加锁的这个线程就会被挂起等待,此时的线程就不会参与调度,直到这个锁被释放,然后系统内核才唤醒这个线程,去尝试获取锁,拿锁的速度很慢,挂起等待锁是实现重量级锁的典型案例。

1.4可重入锁和不可重入锁

可重入锁:针对一个线程,可以连续加锁两次不会出现死锁,synchronized就是可重入锁。
不可重入锁:针对一个线程,连续加锁两次会出现死锁。像c++中的std::mutex就是不可重入锁

1.5公平锁和非公平锁

公平锁:严格按照先来后到的顺序来获取锁,哪个线程等待的时间长,哪个线程就拿到锁
非公平锁:若干个线程,各凭本事,随机获取锁和线程等待时间无关,synchronized就是一个非公平锁。
系统调度本来就是随机的,如果想实现一个公平锁,那么就需要引入一个特殊的队列来根据线程等待的时间来出队列。

1.6互斥锁和读写锁

互斥锁:加锁和解锁,synchronized就是一个互斥锁
读写锁:加读锁和加写锁,读与读之间不会产生互斥,写与写之间会产生互斥,读与写之间也会产生互斥,

2.synchronized的实现原理

2.1实现过程

未加锁(无锁状态)——>偏向锁——>轻量级锁——>重量级锁

2.2偏向锁

首次使用sychronized对对象加锁,此时并不是真正的加锁而是做了一个标记(非常轻量非常快,几乎没有开销)
如果在这其中没有其他线程对这个对象加锁,那么就一直保持这样的一个状态直到解锁的时候(解锁也只是修改标记,几乎没有开销)
但是如果在这期间,有其他对象对进行加锁,那么就会立马升级成轻量级锁。
注意:在这个升级过程中,是不可逆的,一旦升级了就不能降级(在目前版本的JVM中)

2.3优化策略

2.3.1锁升级

2.3.2锁消除

当你在这个代码中加了锁,编译器和JVM会检查当前代码需不需要加锁,不需要就会将这个锁帮你消除,这是在内部操作的,程序猿是感知不到的,例如我在单线程中加了锁,那么编译器和JVM就会把这个锁给消除。

2.3.3锁粗化

在有些逻辑中,需要频繁加锁和解锁,编译器就会自动把这些多次细粒度的锁合成一次粗粒度的锁,"粒度"是指加锁范围中代码的多少,代码越多粒度就越粗,反之越细。

3.CAS

3.1什么是CAS

CAS这是一个比较交换指令,而且这一指令详细的就是读取内存,比较是否相等,修改内存三个步骤,而与之前线程安全问题中多个线程对同一个变量进行修改操作是一样的,也是上述这三个步骤,但CAS这三个步骤是打包一起的是原子的,而对变量修改不是原子的,所以需要加锁,才能保证线程安全,所以CAS在某种程度也可以实现锁的功能。

3.2CAS的应用

3.2.1原子类

标准库中提供了 java.util.concurrent.atomic 包, ⾥⾯的类都是基于这种⽅式来实现的. 典型的就是 AtomicInteger 类.
在这里插入图片描述
通过方法来实现变量的算术运算

//count++
count.getAndIncrement();
//++count
count.incrementAndGet();
//count--
count.getAndDecrement();
//--count
count.decrementAndGet();
//count += 10
count.getAndAdd(10);

通过CAS实现两个线程对count变量相加

AtomicInteger count = new AtomicInteger(0);
Thread t1 = new Thread(()-> {for (int i = 0; i < 50000; i++) {count.getAndIncrement();}
});
Thread t2 = new Thread(()-> {for (int i = 0; i < 50000; i++) {count.getAndIncrement();}
});
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("count = " + count);

这种编程方式也称为无锁编程,这种方式可以提高效率,但适用范围不大。

3.2.2实现自旋锁

由于在读取内存,比较相等,修改内存这三个步骤是原子,所以在某种程度上可以实现锁的功能
以下就是一段伪代码简单实现一下自旋锁

class SpinLock{public Thread owner = null;public void lock() {while(!CAS(this.owner,null,Thread.currentThread())) {}}public void unlock() {this.owner = null;}
}

在这里插入图片描述
在这个方法中,owner变量如果是null,那么此时就是未加锁状态,那么CAS方法就返回true,取反则为false,退出循环,此时就是未加锁,但当owner这个变量不为null的时候调用CAS方法的线程就会将该对象的引用赋值给this.owenr,这个操作是原子的,所以不会有线程安全问题,从侧面就可以体现相当于对这个线程加锁,从此实现了锁的功能。

3.3CAS的ABA问题

3.3.1ABA问题

假设此时我有两个线程分别为t1和t2线程,还有一个共享变量num,此时t1线程想要通过CAS编码的形式把num原来的值A改为C,但是在这个操作之中,t2线程将num中的值从A改为B,又从B改为A,但是在这期间,t1线程不知道。

3.3.2ABA引起的BUG

比如,有一个cs中的悍匪玩家刚好现在余额还有17元买一个钥匙开个箱子,在购买的过程中,因为网络的波动,他按了两次购买键,导致启动了两个线程去完成这个任务,那么t1线程在购买的时候,t2线程在等待阻塞,t1线程完成了购买获得了一把钥匙,但在t2线程执行前刚好另一个ct好友给这位悍匪玩家充值了17元,导致t2线程在执行的时候发现余额中还有17元,则又帮悍匪玩家买了一把,此时就出现了bug,这个时候买了两把钥匙就是ABA问题引起的。

3.3.3如何避免由ABA问题引起的BUG

在要修改的值加入一个版本号,在CAS比较数据的时候比较当前值和之前要修改的值,也要比较版本号是否相同
CAS操作在读取之前要修改的值的同时,也要读取版本号
真正到修改的时候:
如果当前读的版本号与之前要修改的版本号相同,则修改数据并且修改版本号
如果当前读的版本号与之前要修改的版本号不相同,则视为修改失败(可以认为该数据被修改过)
将这个思路带到悍匪玩家买钥匙的案例中:

  • 购买钥匙需要17余额,t1和t2线程获取的余额是17,版本号都是1
  • t1线程购买成功之后,余额变为0,版本号变为2,此时t2线程再阻塞等待
  • 在t2线程执行前,悍匪玩家的好友ct兄弟为其充值了17元余额,此时账户余额又变为17,但此时版本号为3
  • 到t2线程执行的时候,发现余额是17,和之前读到的余额是一样,但是版本号不一样,第一次读的是1,但现在读的是3,版本号不同,则可以视为操作失败

4.java.util.concurrent常见类

4.1Callable接口

这个接口里有个叫call()方法,这个方法与Runnable接口中的run()方法其实大同小异,只是前者有个返回值
在Java中,Thread类的构造方法不直接接受一个Callable对象作为参数。,则需要另一个类来作为一个媒介,FutureTask作为一个媒介。

public static void main(String[] args) throws InterruptedException, ExecutionException {Callable<Integer> callable = new Callable<Integer>() {int sum = 0;@Overridepublic Integer call() throws Exception {for (int i = 1; i < 1000; i++) {sum += i;}return sum;}};FutureTask<Integer> futureTask = new FutureTask<>(callable);Thread thread = new Thread(futureTask);thread.start();thread.join();System.out.println("sum = " + futureTask.get());
}

4.2ReentrantLock类

4.2.1发音

ReentrantLock

4.2.2ReentrantLock的关键特性与功能

  1. ReentrantLock提供了公平锁的实现
  2. ReentrantLock提供了tryLock操作,该操作会立即返回,是否获取到锁,这对于避免死锁和实现超时机制非常有用。
  3. ReentrantLock搭配了Condition类完成等待通知,Condition比wait和notify更强点,Condition可以指定阻塞线程唤醒

4.3Semaphore类——信号量

信号量就是一个计数器,计系统资源的个数。
在底层中对信号量的两个基本操作分别为P操作和V操作
P操作——申请资源
V操作——释放资源
在java中JVM将这两个操作分别封装成acquire(申请资源),release(释放资源)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/42621.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nodejs + vue3 模拟 fetchEventSouce进行sse流式请求

先上效果图: 前言: 在GPT爆发的时候,各项目都想给自己的产品加上AI,蹭上AI的风口,因此在最近的一个需求,就想要给项目加入Ai的功能,原本要求的效果是,查询到对应的数据后,完全展示出来,也就是常规的post请求,后来这种效果遇到了一个很现实的问题:长时间的等待。我…

集成测试技术栈

前端 浏览器操作&#xff1a;playwright、selenium 后端 testcontainercucumbervitestcypressmsw

论文解析——FTRANS: Energy-Efficient Acceleration of Transformers using FPGA

作者及发刊详情 Li B , Pandey S , Fang H ,et al.FTRANS: energy-efficient acceleration of transformers using FPGA[J].ACM, 2020.DOI:10.1145/3370748.3406567. 摘要 正文 主要工作贡献 与CPU和GPU在执行Transformer和RoBERTa相比&#xff0c;提出的FTRANS框架获得了…

入门PHP就来我这(高级)13 ~ 图书添加功能

有胆量你就来跟着路老师卷起来&#xff01; -- 纯干货&#xff0c;技术知识分享 路老师给大家分享PHP语言的知识了&#xff0c;旨在想让大家入门PHP&#xff0c;并深入了解PHP语言。 今天给大家接着上篇文章编写图书添加功能。 1 添加页面 创建add.html页面样式&#xff0c;废…

acwing 291.蒙德里安的梦想

解法&#xff1a; 核心&#xff1a;先放横着的&#xff0c;再放竖着的。 总方案数&#xff0c;等于只放横着的小方块的合法方案数。 如何判断当前方案是否合法&#xff1f;所有剩余位置&#xff0c;能否填充满竖着的小方块。 即按列来看&#xff0c;每一列内部所有连续的空着的…

PTA甲级1005:Spell It Right

错误代码&#xff1a; #include<iostream> #include<vector> #include<unordered_map> using namespace std;int main() {unordered_map<int, string> map {{0, "zero"}, {1, "one"}, {2, "two"}, {3, "three&qu…

EN-SLAM:Implicit Event-RGBD Neural SLAM解读

论文路径&#xff1a;https://arxiv.org/pdf/2311.11013.pdf 目录 1 论文背景 2 论文概述 2.1 神经辐射场&#xff08;NeRF&#xff09; 2.2 事件相机&#xff08;Event Camera&#xff09; 2.3 事件时间聚合优化策略&#xff08;ETA&#xff09; 2.4 可微分的CRF渲染技术…

网络安全设备——防火墙

网络安全设备防火墙是一种用来加强网络之间访问控制的特殊网络互联设备。以下是对防火墙的详细解释&#xff1a; 一、定义与基本概念 定义&#xff1a;防火墙是指设置在不同网络&#xff08;如可信任的企业内部网和不可信的公共网&#xff09;或网络安全域之间的一系列部件的…

ts-01.泛型(函数和接口)

泛型 泛的意思是:漂浮, 比如泛舟; 泛型: 类型漂浮未定 > 动态类型. 用于: 函数 接口 类 T extends string | number 泛型约束 function a<T any, K> (: number, value: T) { // 泛型参数设置默认值anyconst arr Array<T>(l).fill(value) // [foo, foo, foo] }…

论文研读|AI生成图像检测发展历程及研究现状

前言&#xff1a;本篇博客系统性梳理AI生成图像检测的研究工作。 「人工智能生成图像检测」研究及发展现状介绍 参考资料 https://fdmas.github.io/AIGCDetect/针对AIGC检测的鲁棒性测试——常见攻击手段汇总论文研读&#xff5c;以真实图像为参考依据的AIGC检测论文研读&…

实验五 图像增强—空域滤波

一、实验目的 了解图像平滑滤波器&#xff08;均值滤波和中值滤波&#xff09;和图像锐化算子&#xff08;Sobel算子、Prewitt算子、Laplacian算子&#xff09;在工程领域中的应用&#xff1b;理解图像平滑滤波器和图像锐化算子的工程应用范围&#xff1b;掌握图像平滑滤波器和…

Netty学习(Netty入门)

概述 Netty是什么 Netty的地位 Netty的优势 HelloWorld public class HelloClient {public static void main(String[] args) throws InterruptedException {// 1. 启动类new Bootstrap()// 2. 添加 EventLoop.group(new NioEventLoopGroup())// 3. 选择客户端 channel 实现.…

如何恢复未保存的 Excel 文件

您是否曾经在处理 Excel 工作表时&#xff0c;电脑突然崩溃&#xff1f;您首先想到的是“进度保存了吗&#xff1f;”或“我是否按了 CtrlS 来保存文件&#xff1f;”这种压力是难以想象的&#xff0c;因为意外断电或电脑崩溃可能会让您所有的辛苦工作付诸东流。 无论对于学生…

前端技术(三)—— javasctipt 介绍:jQuery方法和点击事件介绍(补充)

6. 常用方法 ● addClass() 为jQuery对象添加一个或多个class <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0">&…

Educational Codeforces Round 167 (Rated for Div. 2)(A~C)题解

A. Catch the Coin 解题思路: 最终&#x1d465;一定会相等&#xff0c;我们考虑直接到下面接住他。 #include<bits/stdc.h> using namespace std; typedef long long ll; #define N 1000005 ll dp[N], w[N], v[N], h[N]; ll dis[1005][1005]; ll a, b, c, n, m, t; ll…

反编译kasada

继续研究反编译 这次的网站是 一个航司网站 他有 akamai和 kasada 两种防护 akamai 没啥好说的 结构分析 最开始有个长字符串 处理成 一个十几万的数组 通过 r.W[0] 走什么分支 还有数据的存取 M是一个98个函数组成的数组 代表不同的执行逻辑 这里给他转成了 switch case…

pygame 音乐粒子特效

代码 import pygame import numpy as np import pymunk from pymunk import Vec2d import random import librosa import pydub# 初始化pygame pygame.init()# 创建屏幕 screen pygame.display.set_mode((1920*2-10, 1080*2-10)) clock pygame.time.Clock()# 加载音乐文件 a…

RAID的实现

软RAID&#xff0c;在实际工作中使用较少&#xff0c;性能太次。 mdadm工具&#xff0c;主要在虚拟机上使用&#xff0c; 硬RAID 用一个单独的芯片&#xff0c;这个芯片的名字叫做RAID卡&#xff0c;数据在RAID中进行分散的时候&#xff0c;用的就是RAID卡。 模拟RAID-5工作…

麦蕊智数,,另外一个提供免费的股票数据API,可以通过其提供的接口获取实时和历史的股票数据。

麦蕊智数&#xff0c;&#xff0c;提供免费的股票数据API&#xff0c;可以通过其提供的接口获取实时和历史的股票数据。 API接口&#xff1a;http://api.mairui.club/hslt/new/您的licence 备用接口&#xff1a;http://api1.mairui.club/hslt/new/您的licence 请求频率&#x…

element-plus的文件上传组件el-upload

el-upload组件 支持多种风格&#xff0c;如文件列表&#xff0c;图片&#xff0c;图片卡片&#xff0c;支持多种事件&#xff0c;预览&#xff0c;删除&#xff0c;上传成功&#xff0c;上传中等钩子。 file-list&#xff1a;上传的文件集合&#xff0c;一定要用v-model:file-…