文章目录
- 需求
- 一、WiFi模块概要
- 二、配置流程
- 1.配置通信串口,引脚和中断
- 2.AT指令
- 3.发送逻辑编写
- 三、需求实现代码
- 总结
需求
完成WiFi模块的配置,使其最终能和服务器相互发送消息。
一、WiFi模块概要
本次使用的WiFi模块为ESP-12F模块(安信可)
驱动芯片为ESP8266(乐鑫)。
ESP8266的使用:
1.作为mcu开发,再次搭建一下它的环境,开发周期较长。
2.利用官方固件使用AT指令(AT+**)开发。
芯片引脚:
通信接口:
二、配置流程
1.配置通信串口,引脚和中断
配置串口3(本次使用的WiFi模块串口接的是串口3)
默认配置: 波特率115200 8位数据位 0位校验位 1位停止位
配置PB10(TX) PB11(RX)
TX:复用推挽 RX:浮空输入
配置PE6(ESP模块的使能引脚)
高电平使能
void Esp8266_Config()
{//开时钟:GPIOB,USART3RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE,ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3,ENABLE);//配置对应的IO口 PB10(tx):复用推挽 PB11(RX):浮空输入GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIO_InitStruct);GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_11;GPIO_Init(GPIOB,&GPIO_InitStruct);//PE6GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOE,&GPIO_InitStruct);//配置串口3 8数据位,0校验位,1停止位,波特率115200USART_InitTypeDef USART_InitStruct = {0};//可以通过结构体类型跳转USART_InitStruct.USART_BaudRate = 115200;//波特率USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//硬件控制流不开USART_InitStruct.USART_Mode = USART_Mode_Tx|USART_Mode_Rx;//打开发送和接收USART_InitStruct.USART_Parity = USART_Parity_No;USART_InitStruct.USART_StopBits = USART_StopBits_1;USART_InitStruct.USART_WordLength = USART_WordLength_8b;USART_Init(USART3,&USART_InitStruct);USART_Cmd(USART3,ENABLE);//配置串口3的中断USART_ITConfig(USART3,USART_IT_RXNE,ENABLE);//USART1->CR1 |= 0x1<<5;//使能串口1的接收非空中断NVIC_SetPriority(USART3_IRQn,7);//设置优先级0~15NVIC_EnableIRQ(USART3_IRQn);//使能中断通道GPIO_SetBits(GPIOE,GPIO_Pin_6);Delay_nms(500);
}
最后加的延时是为了保证所有配置都配置完。
2.AT指令
在配置中断的发送和接收前,我们要了解一下AT指令。
AT 命令(AT Commands)最早是由发明拨号调制解调器(MODEM)的贺氏公司(Hayes)为了控制 MODEM 而发明的控制协议。后来随着网络带宽的升级,速度很低的拨号 MODEM 基本退出一般使用市场,但是 AT 命令保留下来。
在嵌入式开发中,经常是使用AT命令去控制各种通讯模块,比如ESP8266 WIFI模块、4G模块、GPRS模块等等。一般就是主芯片通过硬件接口(比如串口、SPI)发送AT命令给通讯模块,模块接收到数据之后回应响应的数据。
AT指令的分类:
要注意:基本所有AT指令,结尾必须换行(\r\n)
ESP12F模块的工作模式:STA(连接热点) AP(释放热点) STA+AP
STA模式:模组作为节点去连接热点,然后就可连接某个服务器。
AP模式:模组作为热点,释放网络,可以在模组上创建服务器,其他设备连接他。
该模块的指令:
AT :测试固件的
AT+RST :重启ESP8266
ATE0 :关闭回显
ATE1 :打开回显
AT+CWMODE_DEF(_DEF有些固件支持,有些不支持)=x
x=1为设置工作模式 STA模式(可以连接其他设备热点),2为AP模式,3为组合模式。
AT+CWJAP_DEF=“WIFI名”,“WIFI密码” 连接WIFI。
AT+CWSAP :配置 ESP8266 SoftAP 参数(配置释放的热点) 。
AT+CIPAP :设置 ESP8266 SoftAP 的 IP 地址。
多连接情况下 (AT+CIPMUX=1),才能开启 TCP 服务器。
AT+CIPSERVER :建⽴ TCP 服务器
AT+CIPSTART=“TCP”,“IP”,端口号 以TCP的形式连接服务器
AT+CIPMODE=1 : 开启透传 (向wifi发送的所有消息(除+++外)都认为不是指令)
AT+CIPSEND : 启动发送功能
+++ 没有回车 : 退出透传
AT+CIPCLOSE : 退出服务器连接
连接服务器需要那些步骤:
1.连接网络
2.设置位连接热点模式:STA
3.连接热点:名字和密码
4.连接服务器 ip 和 端口
5.收发数据
AT是AT指令还是收发的数据
透传模式(透明传输,所有消息都认为是普通收发的消息)
3.发送逻辑编写
给串口发送命令,可以理解为发送字符串。
为了实现发送字符串,我们先写一个能发送单字节的函数
void Usart3Senddata(uint8_t data)
{//等待发送完成while(USART_GetFlagStatus(USART3,USART_FLAG_TC)==0);//如果上次发送完成,就发送USART_SendData(USART3,data);
}
由于字符串的末尾为"\0",我们结合单字节发送函数就能实现字符串的发送。
void U3_SendStr(uint8_t * data)
{while(*data!='\0'){Usart3Senddata(*data);data++;}
}
一个一个字符发送,发送一个data+1,遇到反斜杠0结束。
为了能够将发送的命令保存起来。
我们先定义一个结构体方便后续操作。
typedef struct{uint8_t recvbuf[1024];uint16_t recvcnt;//保存命令的条数,起到计数作用,防溢出。
}WIFIDATA;
此时我们写一个WiFi发送命令的函数 Wifi_Send_Cmd(char * cmd,char * recv,uint32_t timeout)
参数:命令,期待返回值,超时时间
之所以设置超时时间,是因为这些指令的执行都需要时间,反应较慢。
uint8_t Wifi_Send_Cmd(char * cmd,char * recv,uint32_t timeout)
{uint32_t timecnt=0;memset(&wifidata,0,sizeof(wifidata));//先清空U3_SendStr((uint8_t *)cmd);//发送命令while(strstr((char *)wifidata.recvbuf,recv)==NULL){timecnt++;Delay_nms(1);if(timecnt>=timeout){printf("发送超时失败%s",cmd);return 1;}}printf(" 发送成功 ");return 0;
}
其中strstr函数为查询目标字符串种是否有所需字符串,若有则返回所需字符串的地址,没有则返回0。
strstr(目标字符串,所需字符串)
然后就是写IP链接函数了
uint8_t Wifi_ConnectIP(void)
{if(Wifi_Send_Cmd("AT\r\n","OK",1000) != 0){//测试return 1;}if(Wifi_Send_Cmd("AT+CWMODE=1\r\n","OK",2000) != 0){//设置为STAreturn 1;}if(Wifi_Send_Cmd("AT+CWJAP=\"LEGION-5169\",\"88888888\"\r\n","OK",10000)!= 0){//连接热点return 1;}if(Wifi_Send_Cmd("AT+CIPSTART=\"TCP\",\"36.137.226.30\",37233\r\n","OK",10000)!= 0){//连接服务器return 1;}if(Wifi_Send_Cmd("AT+CIPMODE=1\r\n","OK",1000)!= 0){//开启透传return 1;}if(Wifi_Send_Cmd("AT+CIPSEND\r\n","OK",1000)!= 0){//启动发送功能return 1;}return 0;
}
要注意:"需要反斜杠转义
最后编写串口3和串口1的中断函数:
void USART3_IRQHandler(void)
{uint8_t data=0;if((USART3->SR&0x1<<5)!=0){//执行该中断函数的原因有很多,所以判断一下是不是接收导致的data = USART_ReceiveData(USART3);//读操作,同时也是清空中断标志位wifidata.recvbuf[wifidata.recvcnt] = data;wifidata.recvcnt++;wifidata.recvcnt%=1024;USART_SendData(USART1, data); }
}
void USART1_IRQHandler(void)
{uint8_t data=0;if((USART1->SR&0x1<<5)!=0){//执行该中断函数的原因有很多,所以判断一下是不是接收导致的//接收数据data = USART_ReceiveData(USART1);//读操作,同时也是清空中断标志位USART3->DR = data;//发送数据//USART_SendData(USART5, data); }
}
逻辑如下:
串口3先读接收到的数据,然后将数据保存到结构体中,结构体中的计数器++并对1024取余防止溢出,最后将数据发送给串口1。
串口1先读接收到的数据,后将数据发送给串口3。
三、需求实现代码
main.c
#include "stm32f10x.h"
#include "usart.h"
#include "stdio.h"
#include "delay.h"
#include "string.h"
#include "wifi.h"
uint8_t Send_wifidata[102];int main()
{NVIC_SetPriorityGrouping(5);//两位抢占两位次级Usart1_Config(); SysTick_Config(72000);Esp8266_Config();strcpy((char*)Send_wifidata, "hello world");Wifi_ConnectIP();U3_SendStr(Send_wifidata);while(1){ }return 0;
}
WiFi.c
#include "wifi.h"WIFIDATA wifidata={0};//配置串口3 8数据位,0校验位,1停止位,波特率115200
//PB10(TX) PB11(RX)
void Esp8266_Config()
{//开时钟:GPIOB,USART3RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE,ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3,ENABLE);//配置对应的IO口 PB10(tx):复用推挽 PB11(RX):浮空输入GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIO_InitStruct);GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_11;GPIO_Init(GPIOB,&GPIO_InitStruct);//PE6GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOE,&GPIO_InitStruct);//配置串口3 8数据位,0校验位,1停止位,波特率115200USART_InitTypeDef USART_InitStruct = {0};//可以通过结构体类型跳转USART_InitStruct.USART_BaudRate = 115200;//波特率USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//硬件控制流不开USART_InitStruct.USART_Mode = USART_Mode_Tx|USART_Mode_Rx;//打开发送和接收USART_InitStruct.USART_Parity = USART_Parity_No;USART_InitStruct.USART_StopBits = USART_StopBits_1;USART_InitStruct.USART_WordLength = USART_WordLength_8b;USART_Init(USART3,&USART_InitStruct);USART_Cmd(USART3,ENABLE);//配置串口3的中断USART_ITConfig(USART3,USART_IT_RXNE,ENABLE);//USART1->CR1 |= 0x1<<5;//使能串口1的接收非空中断NVIC_SetPriority(USART3_IRQn,7);//设置优先级0~15NVIC_EnableIRQ(USART3_IRQn);//使能中断通道GPIO_SetBits(GPIOE,GPIO_Pin_6);Delay_nms(500);
}void USART3_IRQHandler(void)
{uint8_t data=0;if((USART3->SR&0x1<<5)!=0){//执行该中断函数的原因有很多,所以判断一下是不是接收导致的data = USART_ReceiveData(USART3);//读操作,同时也是清空中断标志位wifidata.recvbuf[wifidata.recvcnt] = data;wifidata.recvcnt++;wifidata.recvcnt%=1024;USART_SendData(USART1, data); }
}//串口5发送单字节函数
void Usart3Senddata(uint8_t data)
{//等待发送完成while(USART_GetFlagStatus(USART3,USART_FLAG_TC)==0);//如果上次发送完成,就发送USART_SendData(USART3,data);
}//串口5发送数组函数
void U3_Sendarr(uint8_t * data,uint32_t len)
{uint32_t i=0;for(i=0;i<len;i++){Usart3Senddata(*data);data++;}
}void U3_SendStr(uint8_t * data)
{ while(*data!='\0'){Usart3Senddata(*data);data++;}
}uint8_t Wifi_Send_Cmd(char * cmd,char * recv,uint32_t timeout)
{uint32_t timecnt=0;memset(&wifidata,0,sizeof(wifidata));U3_SendStr((uint8_t *)cmd);while(strstr((char *)wifidata.recvbuf,recv)==NULL){timecnt++;Delay_nms(1);if(timecnt>=timeout){printf("发送超时失败%s",cmd);return 1;}}printf(" 发送成功 ");return 0;
}uint8_t Wifi_ConnectIP(void)
{if(Wifi_Send_Cmd("AT\r\n","OK",1000) != 0){//测试return 1;}if(Wifi_Send_Cmd("AT+CWMODE=1\r\n","OK",2000) != 0){//设置为STAreturn 1;}if(Wifi_Send_Cmd("AT+CWJAP=\"LEGION-5169\",\"88888888\"\r\n","OK",10000)!= 0){//连接热点return 1;}if(Wifi_Send_Cmd("AT+CIPSTART=\"TCP\",\"36.137.226.30\",37233\r\n","OK",10000)!= 0){//连接服务器return 1;}if(Wifi_Send_Cmd("AT+CIPMODE=1\r\n","OK",1000)!= 0){//开启透传return 1;}if(Wifi_Send_Cmd("AT+CIPSEND\r\n","OK",1000)!= 0){//启动发送功能return 1;}return 0;
}
wifi.h
#ifndef _WIFI_H_
#define _WIFI_H_
#include "stm32f10x.h"
#include "delay.h"
#include "stdio.h"
#include "string.h"
typedef struct{uint8_t recvbuf[1024];uint16_t recvcnt;
}WIFIDATA;void Esp8266_Config();
void U3_SendStr(uint8_t * data);
uint8_t Wifi_Send_Cmd(char * cmd,char * recv,uint32_t timeout);
uint8_t Wifi_ConnectIP(void);
void U3_SendStr(uint8_t * data);
#endif
总结
1.先看原理图,配串口,引脚和中断。
2.根据发送逻辑进行中断函数的编写。
3.在主函数中调用并按照需求进行实现。