CV03_mAP计算以及COCO评价标准

COCO数据集回顾:CV02_超强数据集:MSCOCO数据集的简单介绍-CSDN博客

1.1 简介

在目标检测领域中,mAP(mean Average Precision,平均精度均值)是一个广泛使用的性能评估指标,用于衡量目标检测模型在检测不同类别目标时的综合性能。以下是mAP的几个关键点:

  1. 定义:mAP是所有类别平均精度(Average Precision, AP)的平均值。AP是针对单个类别计算的,表示在不同召回率(Recall)下精度(Precision)的平均值,或者说是PR曲线(Precision-Recall Curve)下的面积。而mAP则是将所有类别各自的AP值取平均得到的结果,从而提供一个跨类别的整体性能评估。

  2. 计算流程

    • 确定TP/FP:首先,根据预测框与真实框之间的交并比(IoU,Intersection over Union)阈值,确定每个预测框是真阳性(True Positive, TP)还是假阳性(False Positive, FP)。
    • 排序:将预测框按其置信度(confidence score)从高到低排序。
    • 计算Precision和Recall:遍历排序后的预测框,逐步累加TP以计算Recall,同时计算每个步骤的Precision(即当前TP除以总的预测阳性数)。
    • 绘制PR曲线:以Recall为横轴,Precision为纵轴,绘制PR曲线。曲线下的面积即为AP。
    • 计算mAP:对所有类别的AP求平均得到mAP。
  3. 重要性:mAP综合考虑了检测模型的精确度(Precision)和召回率(Recall),是衡量模型在准确检测目标的同时,能否尽可能多地找出所有目标的能力。因此,mAP值越高,表示模型的整体性能越好。

  4. 变体:mAP的计算可以根据不同的应用场景有所变化,比如在某些情况下,会根据不同的IoU阈值计算多个mAP值,或者分别计算不同难度级别(如小目标、中目标、大目标)的mAP,以更全面地评估模型性能。

  5. 应用场景:mAP常用于评估和比较各种目标检测算法,如Faster R-CNN、YOLO、SSD等,在学术研究和工业界均有广泛应用,特别是在自动驾驶、监控系统、医疗影像分析等领域。

在我们使用目标检测网络训练时,最后在验证集上会得到一个coco的评价列表。那么它每个数据的含义都代表什么呢?

1.2 目标检测中常见指标

Precision和Recall

假阳性FP:本来不是目标,但是预测成了目标。

假阴性FN:漏检的目标个数,或者说本来有目标但没有预测出来。

对于Precision和Recall,我们来举几个例子:

图片里有5个GT,模型检测出来一个,那么Precision就是1(TP/(TP+FP)),Recall就是0.2(TP/(TP+FN))。

第二个例子,同样5个GT,查准率大概是5/11,查全率是1。

很显然,只看查准率或者只看查全率是不靠谱的,需要综合起来看。

AP和P-R曲线

AP(Average Precision,平均精度)是一个关键的性能评估指标,用来衡量模型在某一特定类别上检测性能的好坏。

  1. 定义:AP是 Precision(精确率)和 Recall(召回率)之间关系的一种综合度量。它通过计算Precision-Recall曲线(PR曲线)下的面积得到,反映了模型在不同召回率水平下的平均精确度。

  2. PR曲线:在计算AP之前,需要绘制Precision-Recall曲线。随着阈值的调整,模型会输出不同数量的预测框,对应不同的Precision和Recall值。将这些点连接起来形成的曲线即为PR曲线,反映了精确率与召回率之间的权衡。

  3. 计算AP

    • 通常,会在Recall的0到1范围内均匀选取一些点(例如11个点,从0到1每隔0.1取一个点),然后在这些点上计算相应的Precision值。
    • 接着,将这些点的Precision值相加后除以点的数量,得到的就是AP的近似值。有时也会使用数值积分或插值方法来更准确地计算曲线下的面积。
  4. IoU阈值的影响:在计算AP时,通常会涉及到交并比(Intersection over Union, IoU)阈值,用以判断预测框与真实框是否匹配。不同的IoU阈值会得到不同的AP值,常见的IoU阈值有0.5或者更高,这取决于具体的评估标准。

  5. 用途:AP值越高,说明模型在确保召回率的同时,也能保持较高的精确率,是衡量目标检测算法性能好坏的重要标准。在多类别目标检测任务中,还会计算所有类别的AP值的平均值,即mAP(mean Average Precision),以评估模型在所有类别上的平均性能。

AP是目标检测中衡量单一类别检测效果的核心指标,通过综合考虑精确率和召回率,提供了对模型性能全面且直观的评估方式。

举个例子:假设我们已经训练好了模型,下面是用于验证的三张图片。首先累加训练集中目标的个数。接下来通过一个列表来统计我们的网络所检测到的目标信息。第二个检测ID=1的bounding box 的IOU值明显小于0.5,所以被标记为false。

整张表格是按置信度(confidence)排序的。

下面检测下一张图片,此时num_ob的值变为3,表格如下所示:

再检测下一张图片。

接下来我们用拿到的这个表格去计算查准率和查全率。我们将阈值设置到0.98,那么只有一个被筛选出来,我们计算一下此时的查准率和查全率。以此类推,不断降低阈值来计算。

我们以Recall为横坐标,Precision为纵坐标,就能得到一个PR曲线。我们要注意一个问题,对于Recall,我们需要过滤掉一些重复的信息,像0.57的时候我们有三个值,此时我们只需要保留precision最大的这个情况就可以了。右图方框框住的点就是我们的数值。

计算出该类别的AP后,我们再计算出其他类别的AP,然后再求和求均值就得到了MAP。

需要注意的是,网络最终给出的预测结果都是经过NMS(非极大值抑制)之后所得到的目标边界框。

1.3  COCO评价指标每一条数据的含义

虽然下图说的是AP,实际上就是我们之前说的mAP

第一类,就是IOU阈值不同的情况下的mAP,第一行是从IOU0.5开始以步长0.05,直到0.95的是个mAP

对于第二类(AP Across Scales),是针对检测小、中、大物体的mAP。小物体的定义是像素面积小于32的平方,中等物体,大物体如下图所示。第二类就可以衡量模型对不同尺度的目标的检测效果

对于第三类(AR不是AP),先看最后一行是AR max=100, 就是我们每张图片限定只检测100个目标,就是经过NMS后我们最多只提供100个目标。我们得到的相应的recall值

AP和AR的区别

Average Precision (AP):

  • 定义: AP衡量的是模型在不同召回率(Recall)水平下的平均精确度(Precision)。它通过计算Precision-Recall曲线下的面积得到,体现了模型在提升召回率的同时保持高精确度的能力。
  • 计算: AP计算过程中,首先会根据预测框与真实框的交并比(IoU)设定阈值,以此来确定预测是否为真阳性(TP)。然后,通过改变置信度阈值,计算出一系列的Precision和Recall值,进而绘制出PR曲线。AP即为该曲线下方的面积,反映了模型在不同决策阈值下的综合性能。
  • 意义: AP值越高,说明模型在召回所有相关对象(即高召回率)的同时,预测正确的比例也很高(即高精确度),是衡量目标检测算法准确性和全面性的重要指标。

Average Recall (AR):

  • 定义: AR侧重于衡量模型在不同IoU阈值下的平均召回率。与AP不同,AR主要关注模型找到所有相关对象的能力,而不直接考虑预测的精确度。
  • 计算: 在COCO数据集中,AR通常是在多个固定的IoU阈值(例如从0.5到0.95,步长为0.05)下计算召回率,然后取这些召回率的平均值。这种做法考虑了模型在不同定位精度要求下的召回表现。
  • 意义: AR强调模型的召回能力,即检测出所有应该检测到的目标的比例。高AR意味着模型很少漏检,即使某些预测框可能不够精确。

总结:

  • AP更注重精确度和召回率之间的平衡,是综合评价模型在不同置信度阈值下表现的指标。
  • AR则更专注于评估模型召回目标的能力,特别是在不同定位精度标准下的召回一致性。

在实际应用中,两者通常会结合使用,比如mAP(mean Average Precision)是多个类别AP的平均值,而COCO数据集评估时,除了mAP,也会报告AR以获得模型性能的更全面视图。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/41872.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

短信验证码实现

一、设置AccessKey 创建用户并配置使用权限,使我们拥有调用 aliyunAPI 的权限,之后会生成 AccessKeyID 和 AccessKey密码,后面我们会使用到。需要注意的是 AccessKeyID 和 AccessKey密码生成后我们需要将他保存起来,否则后期无法查…

奇迹MU 骷髅战士在哪

BOSS分布图介绍 我为大家带来各地区怪物分布图。在游戏前期,很多玩家可能会不知道该去哪里寻找怪物,也不知道哪些怪物值得打。如果选择了太强的怪物,弱小的玩家可能会无法抵御攻击。如果选择了低等级的boss,收益可能并不理想。所…

智能家居安防系统教学解决方案

前言 随着科技的不断进步和智能家居概念的深入人心,智能家居安防系统作为智能家居领域的重要组成部分,其重要性日益凸显。智能家居安防系统不仅能够提供环境和人员的监测功能,还能够采取措施降低或避免人员伤亡及财产损失。因此,…

word文档没有保存就关闭了怎么恢复?找到正确的方法

昨天写教程的时候,终于完成了一个word文档,以为保存了就直接关了。word提醒我“是否保存”,我直接忽略了。动作一气呵成,毫不犹豫的关闭了。之后才发现我没有保存word文档。这种情况大家有遇到过吗?我们该如何在没有保存的情况下…

迎接AI新时代:GPT-5即将登场的巨大变革与应用前瞻

迎接AI新时代:GPT-5即将登场的巨大变革与应用前瞻 💎1. GPT-5 一年半后发布:AI新时代的来临1.1 GPT-5的飞跃:从高中生到博士生 💎2. GPT-5的潜在应用场景💎2.1 医疗诊断和健康管理💎2.2 教育领域…

ContextCapture - 开启三维世界的魔法之门

亲爱的朋友们,当我第一次接触到ContextCapture这款软件时,我的内心激动得难以平静。仿佛一位魔法师突然出现在我面前,向我展示了一个全新的世界。是的,这就是ContextCapture带给我的感觉 - 它不仅仅是一款软件,更是一把…

基于海思Hi3403V100方案开发双目1600万拼接相机测试截图

海思Hi3403V100平台SOC内置四核A55,提供高效且丰富和灵活的CPU资源,以满足客户计算和控制需求,并且集成单核MCU,已满足一些低延时要求较高场景。 多目相机PE108CB板是针对该芯片设计的一款多目凭借相机PCBA,硬件接口支…

7寸微型FPV无人机技术详解

对于7寸微型FPV(First Person View,第一人称视角)无人机技术的详解,可以从以下几个方面进行介绍: 一、定义与基本概念 FPV无人机,全称为“第一人称视角无人机”,它利用安装在无人机上的摄像头…

键盘异常的检测与解决方案

今天对象用Word写文档,按下Ctrl的时候,页面不停地上下滑动,导致无法正常编辑文本。 重启之后,仍然无法解决,推断是键盘坏了。 但是当按下Fn或其他功能键,焦点移除,页面就不会再抖动了。 现在…

3C电子制造行业MES系统,提高企业生产效率

随着科技的不断进步,3C电子制造行业正迎来传统工厂向数字化工厂转型的阶段。在这场变革中,MES系统发挥着重要的作用,成为了企业变革的“智慧大脑”,引领着生产流程的优化和升级。 那么,MES系统究竟有哪些功能&#xf…

Coze:如何开发你的第一个聊天机器人?

你好,我是三桥君。 我们要学习如何创建第一个聊天机器人?让AI工具成为我们的得力助手,帮助我们的工作。 如何创建Bot? 首先,点击首页里面的“创建Bot”按钮。 ​ “工作空间”我们选择个人空间。接下来是“Bot名称”…

Win11系统文件夹预览无法预览PDF文件,PDF阅读器是adobe acrobat

三步走 首先,打开文件夹预览功能 然后,设置adobe acrobat为默认PDF打开应用 最后,打开在Windows资源管理器中启用PDF缩略图,正常设定后,会显示配置文件,稍等一会。

EFUSE中redundancy program/read的理解

现在有空,整理下前段时间关于efuse中redundancy program/read模式的理解,下面以TEF22ULP128X32HD18_PURM这款芯片为例,进行笔记整理,如有侵权或不妥之处,请时告知并及时处理。 1 redundancy的作用 efuse中存放的是芯…

24.6.30

星期一: 补cf global round26 D cf传送门 思路:把s中非a字符存下来,共m个,然后暴力检测,复杂度有点迷 代码如下: ll n;void solve(){string s; cin &…

基于若依的文件上传、下载

基于若依实现文件上传、下载 文章目录 基于若依实现文件上传、下载1、前端实现-文件上传1.1 通用上传分析1.2 修改实现上传接口 2、后端实现-文件上传3、后端实现-文件下载4、前端实现-文件下载 官网其实也写了,但是我是自己改造封装了一下,再次迈向全栈…

快手大模型首次集体亮相,用AI重塑内容与商业生态

7月6日,在2024世界人工智能大会期间,快手举办了以“新AI新应用新生态”为主题的大模型论坛,会上,快手大模型首次集体亮相,视频生成大模型可灵、图像生成大模型可图等产品的多项新功能正式发布。 继图生视频、视频续写…

Photoshop属于什么软件 Photoshop缓存文件清理 Mac清理PS缓存 苹果电脑ps内存满了怎么清理

对于所有热爱使用Adobe Photoshop的Mac用户来说,这款软件无疑是创意工作的强大助手。但是,随着时间的积累,你可能会发现Photoshop开始变得有点慢,反应迟钝。这通常是因为Photoshop的缓存和临时文件堆积,占用了宝贵的系…

干货 | 2024云安全责任共担模型(免费下载)

以上是资料简介和目录,如需下载,请前往星球获取:

基于Java技术的人事管理系统

你好,我是专注于计算机科学领域的小野。如果你对人事管理系统感兴趣或有相关需求,欢迎私信交流。 开发语言: Java 数据库: MySQL 技术: B/S模式、Java技术、SpringBoot 工具: Eclipse、MySQL、浏览…

第四届BPAA算法大赛成功举办!共研算法未来

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的…