【数据结构(邓俊辉)学习笔记】向量03——无序向量

文章目录

  • 0.概述
  • 1.元素访问
  • 2.置乱器
  • 3.判等器与比较器
  • 4.无序查找
    • 4.1 判等器
    • 4.2 顺序查找
    • 4.3 实现
    • 4.4 复杂度
  • 5. 插入
    • 5.1 算法实现
    • 5.2 复杂度分析
  • 6. 删除
    • 6.1 区间删除
    • 6.2 单元删除
    • 6.3 复杂度
  • 7. 唯一化
    • 7.1 实现
    • 7.2 正确性
    • 7.3 复杂度
  • 8. 遍历
    • 8.1 实现
    • 8.2 复杂度
  • 9. 总结

0.概述

记录向量的元素访问、插入、区间删除、单元素删除、查找、唯一化、遍历算法。

1.元素访问

重载操作符"[]",使元素访问更加便捷。
在这里插入图片描述

template <typename T> T & Vector<T>::operator[] ( Rank r ) //重载下标操作符
{ return _elem[r]; } // assert: 0 <= r < _sizetemplate <typename T> const T & Vector<T>::operator[] ( Rank r ) const //仅限于做右值
{ return _elem[r]; } // assert: 0 <= r < _size

经重载后操作符“[]”返回的是对数组元素的引用,这就意味着它既可以取代get()操作(通常作为赋值表达式的右值),也可以取代set()操作(通常作为左值)。

2.置乱器

目标:借助操作符 “[]” 随机置乱向量,使各元素等概率出现于各位置。
策略:自后向前,依次将各元素与随机选取的某一前驱(含自身)做交换

template <typename T> void permute ( Vector<T>& V ) { //随机置乱向量,使各元素等概率出现于各位置for ( int i = V.size(); i > 0; i-- ) //自后向前swap ( V[i - 1], V[rand() % i] ); //V[i - 1]与V[0, i)中某一随机元素交换
}

从待置乱区间的末元素开始,逆序地向前逐一处理各元素。
在这里插入图片描述
注意,这里的交换操作swap(),隐含了三次基于重载操作符“[]”的赋值。

  • 通过反复调用 permute()算法,可以生成向量 V[0, n)的所有 n!种排列。
  • 由该算法生成的排列中,各元素处于任一位置的概率均为 1/n
  • 该算法生成各排列的概率均为 1/n!

3.判等器与比较器

算法思想:

  • 可比较或可比对的任何数据类型,而不必关心如何定义以及判定其大小或相等关系。
  • 将比对和比较操作的具体实现剥离出来,直接讨论算法流程本身。
  • 在定义对应的数据类型时,通过重载"<“和”=="之类的操作符,给出大小和相等关系的具体定义及其判别方法。
template <typename T> static bool lt ( T* a, T* b ) { return lt ( *a, *b ); } //less than
template <typename T> static bool lt ( T& a, T& b ) { return a < b; } //less than
template <typename T> static bool eq ( T* a, T* b ) { return eq ( *a, *b ); } //equal
template <typename T> static bool eq ( T& a, T& b ) { return a == b; } //equal

在一些复杂的数据结构中,内部元素本身的类型可能就是指向其它对象的指针;而从外部更多关注的,则往往是其所指对象的大小。若不加处理而直接根据指针的数值(即被指对象的物理地址)进行比较,则所得结果将毫无意义。

4.无序查找

4.1 判等器

Vector::find(e)接口,功能语义为“查找与数据对象e相等的元素”。这同时也暗示着,向量元素可通过相互比对判等,但未必支持比较的向量,称作无序向量(unsorted vector)

4.2 顺序查找

在这里插入图片描述
从末元素起自后向前,逐一取出各个元素并与目标元素e进行比对,直至发现与之相等者(查找成功),或者直至检查过所有元素之后仍未找到相等者(查找失败)。这种依次逐个比对的查找方式,称作顺序查找

4.3 实现

template <typename T> //在无序向量中顺序查找e:成功则返回最靠后的出现位置,否则返回lo-1
Rank Vector<T>::find ( T const& e, Rank lo, Rank hi ) const { //0 <= lo < hi <= _sizewhile ( ( lo < hi-- ) && ( e != _elem[hi] ) ); //从后向前,顺序查找return hi; //若hi < lo,则意味着失败;否则hi即命中元素的秩
}

细节:

  • 当同时有多个命中元素时,统一约定返回其中秩最大者
  • while循环的控制逻辑由两部分组成,首先判断是否已抵达lo,再判断当前元素与目标元素是否相等。得益于C/C++语言中逻辑表达式的短路求值特性,在前一判断非真后循环会立即终止,而不致因试图引用已越界的秩(-1)而出错。

4.4 复杂度

最坏情况 查找终止于首元素_elem[lo],运行时间为O(hi - lo) = O(n)。
最好情况 查找命中于末元素_elem[hi - 1],仅需O(1)时间。
对于规模相同、内部组成不同的输入,渐进运行时间却有本质区别,故此类算法也称作输入敏感的算法

5. 插入

5.1 算法实现

算法思想:插入之前必须首先调用expand()算法,核对是否即将溢出。

template <typename T> //将e插入至[r]
Rank Vector<T>::insert ( Rank r, T const& e ) { //0 <= r <= sizeexpand(); //如必要,先扩容for ( Rank i = _size; r < i; i-- ) //自后向前,后继元素_elem[i] = _elem[i-1]; //顺次后移一个单元_elem[r] = e; _size++; //置入新元素并更新容量return r; //返回秩
}

在这里插入图片描述
为保证数组元素物理地址连续的特性,随后需要将后缀_elem[r, _size)(如果非空)整体后移一个单元(图©)。这些后继元素自后向前的搬迁次序不能颠倒,否则会因元素被覆盖而造成数据丢失。在单元_elem[r]腾出之后,方可将待插入对象e置入其中(图(d))。

5.2 复杂度分析

时间主要消耗于后继元素的后移,线性正比于后缀的长度,故总体为O(_size - r + 1)。
r取最大值_size时为最好情况,只需O(1)时间;r取最小值0时为最坏情况,需要O(_size)时间。

若插入位置等概率分布,则平均运行时间为O(_size) = O(n)

运行时间主要来自于后继元素顺次后移的操作。因此对于每个插入位置而言,对应的移动操作次数恰好等于其后继元素(包含自身)的数目。不难看出它们也构成一个等差数列(数学期望O( n 2 n^2 n2) m为后继元素数目),故在等概率的假设条件下,其均值(数学期望)应渐进地与其中的最高项同阶,为O(n)。

6. 删除

应将单元素删除视作区间删除的特例,并基于后者来实现前者

6.1 区间删除

template <typename T> Rank Vector<T>::remove( Rank lo, Rank hi ) { //0 <= lo <= hi <= nif ( lo == hi ) return 0; //出于效率考虑,单独处理退化情况while ( hi < _size ) _elem[lo++] = _elem[hi++]; //后缀[hi, _size)顺次前移hi-lo位_size = lo; shrink(); //更新规模,lo=_size之后的内容无需清零;如必要,则缩容//若有必要,则缩容return hi - lo; //返回被删除元素的数目
}

在这里插入图片描述
设[lo, hi)为向量(图(a))的合法区间(图(b)),则其后缀[hi, n)需整体前移hi - lo个单元(图©)。与插入算法同理,后继元素自前向后的移动次序也不能颠倒。

  • 若以自后向前得次序逐个前移后继元素,位置靠前的元素,可能被位置靠后(优先移动)的元素覆盖,从而造成数据的丢失。
    在这里插入图片描述
    V.remove(0, 2)以删除其中的前两个元素,可见,原数据元素V[2] = 2并未顺利转移至输出向量中的V[0],即出现数据的丢失现象。

6.2 单元删除

重载即可实现如下另一同名接口remove( r )。

template <typename T> T Vector<T>::remove( Rank r ) { //删除向量中秩为r的元素,0 <= r < sizeT e = _elem[r]; //备份被删除元素remove( r, r + 1 ); //调用区间删除算法,等效于对区间[r, r + 1)的删除return e; //返回被删除元素
}

6.3 复杂度

remove(lo, hi)的计算成本,主要消耗于后续元素的前移,线性正比于后缀的长度,总体不过O(m + 1) = O(_size - hi + 1)。
结论

区间删除操作所需的时间,应该仅取决于后继元素的数目,而与被删除区间本身的宽度无关。

被删除元素在向量中的位置越靠后(前)所需时间越短(长),最好为O(1),最坏为O(n) = O(_size)。

7. 唯一化

所谓向量的唯一化处理,就是剔除其中的重复元素。

7.1 实现

算法思想:该算法自前向后逐一考查各元素_elem[i],并通过调用find()接口,在其前缀中寻找与之雷同者。若找到,则随即删除;否则,转而考查当前元素的后继。

template <typename T> Rank Vector<T>::dedup() { //删除无序向量中重复元素(高效版)Rank oldSize = _size; //记录原规模for ( Rank i = 1; i < _size; ) //自前向后逐个考查_elem[1,_size)if ( -1 == find(_elem[i], 0, i) ) //在前缀[0,i)中寻找与[i]雷同者(至多一个),O(i)i++; //若无雷同,则继续考查其后继elseremove(i); //否则删除[i],O(_size-i)return oldSize - _size; //被删除元素总数
}

7.2 正确性

在while循环中,在当前元素的前缀_elem[0, i)内,所有元素彼此互异
在这里插入图片描述

7.3 复杂度

随着循环的不断进行,当前元素的后继持续地严格减少

这里所需的时间,主要消耗于find()和remove()两个接口。

find()时间应线性正比于查找区间的宽度,即前驱的总数;
remove()时间应线性正比于后继的总数。因此,每步迭代所需时间为O(n),总体复杂度应为O( n 2 n^2 n2)。

8. 遍历

8.1 实现

算法思想:

  1. 借助函数指针*visit()指定某一函数,该函数只有一个参数,其类型为对向量元素的引用,故通过该函数即可直接访问或修改向量元素。
  2. 也可以函数对象的形式,指定具体的遍历操作。这类对象的操作符“()”经重载之后,在形式上等效于一个函数接口,故此得名。
    在这里插入图片描述
template <typename T> void Vector<T>::traverse( void ( *visit )( T& ) ) //借助函数指针机制
{ for ( Rank i = 0; i < _size; i++ ) visit( _elem[i] ); } //遍历向量template <typename T> template <typename VST> //元素类型、操作器
void Vector<T>::traverse( VST& visit ) //借助函数对象机制
{ for ( Rank i = 0; i < _size; i++ ) visit( _elem[i] ); } //遍历向量

相比较而言,后一形式的功能更强,适用范围更广。

比如,函数对象的形式支持对向量元素的关联修改。也就是说,对各元素的修改不仅可以相互独立地进行,也可以根据某个(些)元素的数值相应地修改另一元素。前一形式虽也可实现这类功能,但要繁琐很多。

例如:统一递增向量中的各元素

template <typename T> void increase ( Vector<T> & V ) //统一递增向量中的各元素
{  V.traverse ( Increase<T>() );  } //以Increase<T>()为基本操作进行遍历

8.2 复杂度

遍历操作本身只包含一层线性的循环迭代,故除了向量规模的因素之外,遍历所需时间应线性正比于所统一指定的基本操作所需的时间。故这一遍历的总体时间复杂度为O(n)。

9. 总结

  1. 置乱算法 permute() 从待置乱区间的末元素开始,逆序地向前逐一处理各元素。时间复杂度为O(n)
  2. 顺序查找算法 find() 从末元素起自后向前,逐一取出各个元素并与目标元素进行比对,时间复杂度应线性正比于查找区间的宽度,即前驱的总数。
  3. 插入算法insert() ,时间复杂度线性正比于后缀的长度为
  4. 删除算法remove() ,时间复杂度应该仅取决于后继元素的数目
  5. 唯一化算法deduplicate(),主要消耗于find()和remove()两个接口,时间复杂度O( n 2 n^2 n2),可以继续改进。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/3968.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spark 基础

/* Why Spark一、MapReduce编程模型的局限性1、繁杂&#xff1a;只有Map和Reduce两个操作&#xff0c;复杂的逻辑需要大量的样板代码2、处理效率低&#xff1a;2.1、Map中间结果写磁盘&#xff0c;Reduce写HDFS&#xff0c;多个Map通过HDFS交换数据2.2、任务调度与启动开销大3、…

LayuiMini使用时候初始化模板修改(下载源码)

忘记加了 下载 地址 &#xff1a; layui-mini: layuimini&#xff0c;后台admin前端模板&#xff0c;基于 layui 编写的最简洁、易用的后台框架模板。只需提供一个接口就直接初始化整个框架&#xff0c;无需复杂操作。 LayuiMini使用时候初始化模板官网给的是&#xff1a; layu…

Vue 组件单元测试深度探索:组件交互与状态变更 专业解析和实践

在Vue组件单元测试中&#xff0c;验证组件之间的交互&#xff08;如父组件与子组件、兄弟组件之间的通信&#xff09;以及状态变更的正确性对于保证整个应用的协调运作至关重要。本文详细介绍了父组件向子组件传递props、子组件向父组件发送事件、兄弟组件通过共享状态&#xf…

自然语言处理 (NLP) 的技术演变史

一、简述 本文的目标是了解自然语言处理 (NLP) 的历史&#xff0c;包括 Transformer 体系结构如何彻底改变该领域并帮助我们创建大型语言模型 (LLM)。 基础模型&#xff08;如 GPT-4&#xff09;是最先进的自然语言处理模型&#xff0c;旨在理解、生成人类语言并与之交互。 要理…

国产3D自研技术如何突围?眸瑞科技给3D建设、管理带来全新模式

眸瑞科技是全球领先的数字孪生引擎技术及服务提供商&#xff0c;它专注于让一切3D模型在全网多端轻量化处理与展示&#xff0c;为行业数字化转型升级与数字孪生应用提供成套的国产自研3D可视化技术、产品与服务。 引言 眸瑞科技是全球领先的数字孪生引擎技术及服务提供商&…

【MyBatisPlus】一、公共字段填充配置

目录 一、实体类配置 二、配置MyBatis Plus元对象处理器 三、接口字段自动填充 在使用mybatisplus项目中设置公共字段填充&#xff0c;可以按如下进行配置 一、实体类配置 TableField(value "create_time",fill FieldFill.INSERT)private LocalDateTime createTime…

【C++】哈希思想

目录 哈希介绍&#xff1a; 一&#xff0c;位图 1-1&#xff0c;位图的认识 1-2&#xff0c;位图的简单实现 1-3&#xff0c;位图的应用 二&#xff0c;布隆过滤器 2-1&#xff0c;布隆过滤器的认识 2-2&#xff0c;布隆过滤器的简单实现 2-3&#xff0c;布隆过滤器的…

Kafka 3.x.x 入门到精通(06)——Kafka进阶

Kafka 3.x.x 入门到精通&#xff08;06&#xff09;&#x1f449;&#x1f449;&#x1f449;&#x1f449; Kafka进阶 3. Kafka进阶3.1 Controller选举3.2 Broker上线下线3.3 数据偏移量定位3.4 Topic删除3.5 日志清理和压缩3.7 页缓存3.8 零拷贝3.9 顺写日志3.10 Linux集群部…

Debian12使用宝塔国际aaPanel无法安装Docker

宝塔国际aaPanel自带安装Docker&#xff0c;安装了几次都失败&#xff0c;最后仔细看了安装日志&#xff0c;才发现其中的问题。 复制 --2023-11-28 13:42:13-- https://node.aapanel.com/install/0/docker_install_en.sh Resolving node.aapanel.com (node.aapanel.com)...…

Dockerfile镜像构建实战

一、构建Apache镜像 cd /opt/ #建立工作目录 mkdir /opt/apache cd apache/vim Dockerfile #基于的基础镜像 FROM centos:7 #维护镜像的用户信息 MAINTAINER this is apache image <cyj> #镜像操作指令安装Apache软件 RUN yum install -y httpd #开启80端口 EXPOSE 80 #…

从零开始利用MATLAB进行FPGA设计(五)详解双口RAM

创作于谱仪算法设计过程中的数字能谱生成模块设计。 往期回顾&#xff1a; 从零开始利用MATLAB进行FPGA设计&#xff08;四&#xff09;生成优化HDL代码 从零开始利用MATLAB进行FPGA设计&#xff08;三&#xff09;将Simulink模型转化为定点数据类型 目录 1.关于双口RAM …

php反序列化字符串逃逸

字符串逃逸 字符串逃逸是通过改变序列化字符串的长度造成的php反序列化漏洞 一般是因为替换函数使得字符串长度发生变化&#xff0c;不论变长还是变短&#xff0c;原理都大致相同 在学习之前&#xff0c;要先了解序列化字符串的结构&#xff0c;在了解结构的基础上才能更好理解…

低代码信创开发核心技术(四)动态元数据系统设计

一、概述 在当今快速发展的信息技术领域&#xff0c;动态元数据系统扮演着至关重要的角色。它不仅能够提供数据的描述信息&#xff0c;还能动态地适应业务需求的变化&#xff0c;从而提高系统的灵活性和可扩展性。构建一个动态元数据系统意味着我们可以在不重启系统的情况下&a…

硬件21、接线端子XH2.54、2.54排针排母、2510接插件、PH2.0、町洋接线端子5.08、ISP接口JTAG插座

XH2.54端子的间距为2.54毫米&#xff0c;2.54排针排母的间距也是2.54mm&#xff0c;2510接插件也是2.54、而PH2.0端子的间距为2.0毫米&#xff0c;町洋接线端子插针间的距离是5.08mm&#xff0c;ISP接口JTAG插座针脚的间距一般也是2.54mm XH2.54 针脚间距为2.54mm 插头 接线…

如何使用 Internet Download Manager (IDM) 来加速和优化你的下载体验 IDM 6.41下载神器

在当今信息爆炸的时代&#xff0c;下载文件和媒体内容已成为我们日常生活的一部分。无论是工作学习还是娱乐休闲&#xff0c;我们都需要从互联网上下载各种资源。为了提高下载效率和确保文件完整性&#xff0c;选择一款优秀的下载管理软件至关重要。Internet Download Manager …

浅谈游戏机制

浅谈游戏机制 前言什么是游戏机制&#xff1f;机制组成机制类别结语 前言 最近在编写游戏开发文档的时候了解到游戏机制&#xff0c;第一次接触游戏机制的概念难免有些陌生&#xff0c;但感觉又跟常见&#xff0c;在网上查阅浏览了一些资料后了解到游戏机制还不止一个。 现在将…

vue echarts 柱状图 堆叠柱状图

echarts堆叠柱状图&#xff08;效果图在文章末尾&#xff09; 1、默认只显示 月度的 数据&#xff0c;手动点击 legend 季度的 数据才会显示&#xff1b; 2、监听左侧菜单栏的宽度变化&#xff0c;图表宽度自适应展示 <template><div><div id"barChart&q…

构建数字化银行:现代化总架构探究

随着科技的迅速发展和用户需求的不断变化&#xff0c;传统银行业正迎来一场数字化转型的浪潮。在这个数字化时代&#xff0c;银行需要构建现代化的总架构&#xff0c;以适应快速变化的市场环境和客户需求。本文将深入探讨数字化银行的总架构设计理念、关键技术以及实践经验&…

乘数而上,创邻科技入选2024数商典型应用场景“乘数榜”

4月18日&#xff0c;由浙江省科学技术协会指导的2024未来数商大会在杭州成功举办。本次大会以“场景突破 乘数而上”为主题&#xff0c;国际国内数商共聚未来科技城学术交流中心&#xff0c;聚焦数据要素市场的制度创新、数据治理、场景应用与生态构建等话题展开研讨。 大会现…

软件需求管理规程(Word原件2024)

软件开发人员及用户往往容易忽略信息沟通&#xff0c;这导致软件开发出来后不能很好地满足用户的需要&#xff0c;从而造成返工。而返工不仅在技术上给开发人员带来巨大的麻烦&#xff0c;造成人力、物力的浪费&#xff0c;而且软件的性能也深受影响。所以在软件项目开发周期的…