通俗易懂的chatgpg的原理简介

目录

一、深度学习与语言模型

二、ChatGPT训练三步走

三、情景学习与思维链

四、修改提示语优化结果

五、能力评估和注意问题

六.算法原理

极简ChatGPT原理

简介:

ChatGPT的人工智能原理主要基于深度学习技术,特别是大规模的预训练语言模型和Transformer结构。ChatGPT通过接收用户输入并返回响应,逐渐学习对话生成的任务,其内部包含大量的参数和复杂的结构,能够进行高度复杂的语言理解、推理和生成。

一、深度学习与语言模型

深度学习就是用层数较多(深)的人工神经网络从数据中学习输入与输出之间映射关系的算法,而人工神经网络是受生物神经网络的结构和功能启发下设计的计算模型。

用深度学习训练得到的网络就叫深度神经网络,它可以简单的看成一个函数,能够完成任何输入到输出的转换。比如:我们可以用它玩成语补全的游戏,输入成语的前三个字,让网络输出最后一个字(见图1)。

图1. 成语补全的深度神经网络

语言模型可以看成是成语补全的扩展版,它能够给定任意上文的情况下,预测下一个字或词。比如:输入“床前明月光,疑是地”,模型会输出“上”,然后将“上”添加到原输入中变成“床前明月光,疑是地上”,再输入到模型中,则会输出“霜”。如此这般,可以生成出完整的唐诗《静夜思》。使用这样的语言模型就可以完成文本生成任务了,类似技术被称为生成式人工智能(当然也还要包括生成图像、声音和视频等等啦)。

能够依据多长的上文来预测下一个字或词对模型的性能影响较大,目前一般从几千到几万个字或词不等,能够处理的上文越长,模型越强大。很多情况下,相同的上文,可以有多个不同的下文,所以模型输出实际上是不同可选字或词的概率分布。基于这些概率分布,使用随机采样方法就可以为同一个上文生成不同的下文,这种能力对于ChatGPT这种聊天和对话模型非常有用,因为它可以带来回答的多样性。

二、ChatGPT训练三步走

第一步“学会说话”:我们用深度神经网络来训练语言模型,先收集包含各种语言(英文、中文、法文等)尽可能多的文本,每次随机抽一段上文,让模型学会接着往下“背诵”(见图2)。由于看过和背过的文字实在是太多了(实际训练使用了几乎所有能从各种渠道获得的文字和图书资源),模型就可以像模像样地说话了。训练时除了使用海量文本,还会包括大量的代码(就当普通文本一样对待)。一般认为代码有助于提高模型的“逻辑推理”能力,因为代码实现的算法就是对求解问题所需逻辑步骤的描述。

图2. 使用海量包含多种语言的文本训练语言模型

第二步“理解意图”:光会文字接龙肯定是不够的,最终目标是要用它来替我们干活的。所以这一步我们让模型统一以“给上文、补下文”方式来学习完成各种各样的任务。问答任务直接可以用“给上文(问题)、补下文(回答)”方式实现,但有些任务还需要在上文中加上提示(见图3)。以翻译为例,除了告诉模型需要翻译的内容外,还要指示模型翻译成哪种目标语言。这一步提示学习完成之后,模型即已“博览群书”(第一步)而“胸有成竹”,又能“领会意图”(第二步)而“对答如流”,已经处于基本可用的状态了。

图3. 多任务提示学习让模型学会各种任务(绿色字体为提示语)

第三步“反馈择优”:对于某些问题,模型可能会生成带有偏见、歧视或者令人不适的回答。另外,之前提到过,对于同一个问题,模型能够生成多个不同的回答。这一步中我们让人们对同一问题的不同回答进行排序,然后采用强化学习算法(从交互中得到反馈,迭代优化模型的生成策略)进一步调整模型,使输出回答更符合人们的期望,达到与人们期望对齐的效果(见图4)。

图4. 使用强化学习提高模型生成与人们期望相符回答的概率

经过以上学会说话、理解意图和反馈择优三个主要训练步骤,能够以自然语言对话方式完成各种任务的生成式大模型就构建出来了,之后当然还可用领域数据或强化学习进一步对模型进行迭代精调。一般而言,模型的规模越大,能够存储和融合的信息和知识就越多,性能也就越好。

希望详细了解构建和训练类ChatGPT模型完整过程可以参阅《如何构建和训练ChatGPT》(特别是强化学习部分)。

三、情景学习与思维链
使用ChatGPT时,情景学习(In-context Learning)方法能够显著提高其回答的质量,它的原理其实也非常简单。比如:问一位年幼的孩子4乘以5等于多少,他可能答不上来。但你先告诉他:“1乘以5等于5;2乘以5等于10;3乘以5等于15。”接着再问他:“4乘以5等于多少?”,他回答正确的可能性就增加了。同样,情景学习也是在提问前列举一些相似的例子作为输入喂给模型。
以影评的情感分析为例(见图5),先给出三个影评及其情感极性(好评、中性和差评),然后让模型分析“看完后让人感慨万分,久久不能忘怀。”的极性。

图5. 影评情感分析中使用情景学习的例子
一般来讲,使用情景学习时,所给出的例子越多越好。这里有一个有趣的现象值得一提,测试表明在所给出的例子中标签(即图5中的“差评”、“中性”和“好评”)是否正确与性能关系不大。比如:我们将“主演表情作作、略显浮夸。”的标签改成“好评”,又将“这部电影叙事紧凑、特技一流。”的标签改成“差评”,并不会影响模型对于“看完后让人感慨万分,久久不能忘怀。”影评的分析结果。但是例子呈现的格式(图5为一则影评后跟相应的情感标签,中间以空格分隔)要与提问的形式保持一致,并且文字内容要来自同一领域(图5中的例子不宜是餐馆或旅店评价的语句,因为问题是对电影评价的情感分析)。
我个人认为出现以上现象的原因是:ChatGPT是一种集成了语言运用、语义理解和世界知识的模型。模型其实已经具备了回答所需要的知识,少量的例子并不足于改变模型对于问题的判断和回答,难点是如何引导模型准确提取出与问题相关的知识来。所以情景学习中的例子要来自同一领域,这有利于模型检索出回答问题所需的相关信息和知识。同时,以统一的格式呈现例子和问题,则有利于模型按格式规定的顺序依次生成回答。
思维链(Chain-of-Thought)可以看成是情景学习的扩展,它不仅给出例子及相应结果,还给出得到该结果的计算或推理步骤(见图6)。本人猜想思维链有效的原因是给模型解题提供了一种模板或过程的指引,这种序列化的文本模板易于被生成模型所使用,它为生成较长内容的整体结构和中间步骤进行了预先的规划。这种模板也为模型在特定步骤上调取计算或推理所需知识提供了线索,从而引导模型得出正确的答案。

图6. 求解数学应用题时使用思维链的例子
四、修改提示语优化结果
提示语(本文第二节的第二步提到过)的好坏确实会影响ChatGPT的回答质量(情景学习和思维链都可以看成是特殊的提示),现在已经出现了提示工程(Prompt Engineering)这个研究方向和提示工程师这种职位。撰写好的提示语有两个基本原则:
  1. 指令清晰并且具体;
  2. 给模型思考的时间。
第1条原则比较好理解,一般不要担心指令写得过长。在没有冗余的情况下,宜长不宜短。第2条原则的意思是复杂问题不要让模型直接得出结论,而要详细指示所需步骤,然后让模型根据每一步得到的结果再给出最终的判断。比如:对于一道比较复杂的数学应用题,不要直接问某个答案是否正确。可以参考以下形式来写提示语:
  • 第一步:先求解这道数学应用题;
  • 第二步:将求解出的答案与给出的答案进行比较;
  • 第三步:根据比较的结果,回答给出的答案是否正确。
如果以API方式批量调用ChatGPT的话,这里提醒一个小技巧。可以指示ChatGPT以JSON、HTML等结构化形式返回结果,以方便提取所需的内容。
五、能力评估和注意问题
2022年11月所推出的ChatGPT已经非常可怕了,OpenAI公司又于2023年3月推出比ChatGPT更为强大的GPT-4,并且还开始支持网页搜索、图片生成、计算器等插件(Plugins),使其能够在必要时调用插件来提高解决问题的能力。
ChatGPT在没有针对医学知识精调和强化的情况下,在美国医学执照考试的三个部分中达到或接近通过的门槛。Google公司对ChatGPT进行了程序员招聘面试,结果其编程能力可匹敌一位三级水平的软件工程师,每年可攒得18.3万美元薪资。ChatGPT还在MBA核心课程《运营管理》的期末考试中的基本运营管理和流程分析方面表现出色,不仅答案正确,而且能给出合理的解释。
我们近期借助认知心理学方面的理论对ChatGPT认知能力进行了评测,它在词汇的任务上表现相对出色,与英语母语的16岁左右高中生的认知能力相当,但逻辑推理和数字处理方面的能力相对较弱,相当于10岁左右的小学生水平,整体表现文强理弱。
ChatGPT和GPT-4等本质上是能够执行生成任务的机器学习模型,其天生会存在或衍生出以下一些问题:
  1. “幻觉”问题,即生成看起来似乎合理,但不准确或编造的信息(天生什么话都会接);
  2. 容易生成带有偏见、歧视和不符合伦理内容(训练使用的数据集里就存在);
  3. 缺乏及时更新信息和知识的方法(使用网页搜索插件会有所缓解);
  4. 某些任务的返回结果受提示词的影响较大;
  5. 使用和交互时可能会泄露个人的隐私;
  6. 可能被某些人滥用来制造虚假信息和内容等
六.算法原理
ChatGPT的算法原理主要基于深度学习和自然语言处理技术,通过构建一个大型语言模型来实现。这个模型的核心在于它能够学习并理解大量的文本数据,包括网页、新闻、书籍等,以及网络上的热点话题和流行文化,从而了解最新的语言模式和表达方式。ChatGPT的工作流程大致如下:
  1. 数据收集与预处理:首先,ChatGPT会收集大量的文本数据,并对这些数据进行预处理,包括分词、去除停用词、翻译等,以帮助模型更好地理解输入的文本并提高生成的文本质量。
  2. 建立模型:在预处理的基础上,ChatGPT会构建一个深度学习模型,该模型包含了多个卷积层、循环神经网络和池化层等,这些层的协同工作能够使模型更好地捕捉语言的模式和语义。
  3. 生成文本:一旦建立了模型,ChatGPT就可以生成与人类语言相似的输出文本。它使用的是一种称为“Transformer”的深度学习架构,该架构能够学习从输入文本到输出文本的映射关系。
  4. 输出控制:生成的文本输出后,还需要进行一系列的输出控制,包括语法、语义、情感等方面,以确保生成的文本符合人类语言习惯。
好吧,就到这里了!类似ChatGPT这种生成式大模型必然会对我们未来的工作生活产生较大影响。目前网络上绝大部分内容还是人类创造的,之后机器自动生成的比重会不断上升。既然避不开、躲不过、逃不脱,我们只能选择了解它、适应它、利用它。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/39027.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

马斯克宣布xAI将在8月份推出Grok-2大模型 预计年底推出Grok-3

在今年内,由特斯拉创始人马斯克创立的人工智能初创公司xAI将推出两款重要产品Grok-2和Grok-3。马斯克在社交平台上透露了这一消息,其中Grok-2预计在今年8月份面世,而Grok-3则计划于年底前亮相。 除此之外,马斯克还表示&#xff0c…

EI期刊投稿要多久

EI检索的文章,无论是期刊还是会议论文,从投稿到发表的时间长度不一,受到多种因素的影响,包括期刊的审稿速度、会议的安排、以及EI的检索周期。 对于EI期刊文章,整个过程通常需要5到8个月,有时甚至更长。这包…

iptable精讲

SNAT策略 SNAT策略的典型应用环境 局域网主机共享单个公网IP地址接入Internet SNAT策略的原理 源地址转换,Source Network Address Translantion 修改数据包的源地址 部署SNAT策略 1.准备二台最小化虚拟机修改主机名 主机名:gw 主机名&#xff1…

嵌入式以太网硬件构成与MAC、PHY芯片功能介绍

一.以太网电路基本构成 1.总体介绍 对于上述三部分,并不一定都是独立的芯片,主要有以下几种情况: CPU内部集成了MAC和PHY,难度较高; CPU内部集成MAC,PHY采用独立芯片(主流方案); CPU不集成MAC和PHY&#…

招生报名系统教培招生小程序

招生报名系统:轻松实现教培招生新高度 🚀 招生报名系统,开启智慧教育新时代 在当今数字化快速发展的时代,教育行业也迎来了变革的浪潮。招生报名系统作为这一变革的先锋,为教育机构提供了全新的招生渠道和管理方式。通…

挑战与成长:面对他人成就引发的焦虑与迷茫

挑战与成长:面对他人成就引发的焦虑与迷茫 对于追求知识和技能的人来说,看到他人做出自己尚未达到的成就确实会带来焦虑感。这种焦虑常常源于对自己能力的质疑和对未来的不确定性。 在我的学习和发展过程中,有时确实会看到其他模型或系统能…

实操Nginx+Tomcat多实例部署,实现负载均衡和动静分离

192.168.10.10 192.168.10.20 192.168.10.30 location ~ \.jsp$ {proxy_pass http://192.168.10.50:8080;} location ~ \.(jsp|html)$ {root /usr/share/nginx/html;}192.168.10.40和192.168.10.50用脚本完成搭建此处安装附上脚本: #!/bin/bash# 定义变量 JDK_PACKA…

【微服务网关——Websocket代理】

1.Websocket协议与原理 1.1 连接建立协议 1.1.1 客户端发起连接请求 客户端通过 HTTP 请求发起 WebSocket 连接。以下是一个 WebSocket 握手请求的例子: GET /chat HTTP/1.1 Host: server.example.com Upgrade: websocket Connection: Upgrade Sec-WebSocket-Key…

Python面试宝典第3题:石子游戏

题目 Alice 和 Bob 用几堆石子在做游戏:一共有偶数堆石子,排成一行;每堆都有正整数颗石子,数目为 piles[i] 。游戏以谁手中的石子最多来决出胜负,石子的总数是奇数 ,所以没有平局。 Alice 和 Bob 轮流进行&…

CV01_相机成像原理与坐标系之间的转换

目录 0.引言:小孔成像->映射表达式 1. 相机自身的运动如何表征?->外参矩阵E 1.1 旋转 1.2 平移 2. 如何投影到“像平面”?->内参矩阵K 2.1 图像平面坐标转换为像素坐标系 3. 三维到二维的维度是如何丢失的?…

LVS-负载均衡

目录 一、概念 二、LVS工作原理 1. ipvs/ipvsadm 2.名词: 三、常用命令 四、工作模式 1.NAT地址转换模式 (1)工作流程 (2)特点 (3)实验过程 a.环境准备: b.修改测试机的…

UE5 动画蓝图

文章目录 一、State Machines二、Blend Spaces三、Aim Offset四、Montage 初步介绍 Unreal Engine 5 Tutorial - Animation Blueprint Part 1: State Machines (youtube.com) Unreal Engine 5 Tutorial - Animation Blueprint Part 2: Blend Spaces (youtube.com) Unreal Engi…

非静压模型SWASH学习(8)——三维孤立波在锥形岛屿上的爬坡过程(Runup of solitary waves on a conical island)

三维孤立波在锥形岛屿上的爬坡过程(Runup of solitary waves on a conical island) 算例简介模型配置网格及参数设置网格与地形初始条件与边界条件数值求解方法输出设置模拟时间 波浪(孤立波)入射边界的时间序列.bnd文件模拟结果注…

[吃瓜教程]南瓜书第4章决策树

1.决策树的算法原理 从逻辑角度,条件判断语句的组合;从几何角度,根据某种准则划分特征空间; 是一种分治的思想,其最终目的是将样本约分约纯,而划分的核心是在条件的选择或者说是**特征空间的划分标准 ** …

mac安装达梦数据库

参考:mac安装达梦数据库​​​​​​ 实践如下: 1、下载达梦Docker镜像文件 同参考链接 2、导入镜像 镜像可以随便放在某个目录,相当于安装包,导入后就没有作用了。 查找达梦镜像名称:dm8_20240613_rev229704_x86…

第1章 人工智能的基础概念与应用导论

亲爱的读者朋友们,你们好!欢迎来到这个充满神奇与奥秘的人工智能世界。我知道,对于很多人来说,人工智能(AI)可能是个既神秘又高大上的词汇,仿佛遥不可及,只存在于科幻电影或者顶级科…

Figma-ui设计学习APP Store

Figma汉化:Figma 中文社区_插件组件库,软件汉化教程 - Figma.Cool 选择Chorme汉化版离线包 插件安装: 打开浏览器安装扩展,解压加载进去即可。 打开标尺,设置左右内边距参考线(左21 右356),wi…

【postgresql】版本学习

PostgreSQL 17 Beta 2 发布于2024-06-27。 PostgreSQL 17 Beta 2功能和变更功能的完整列表:PostgreSQL: Documentation: 17: E.1. Release 17 ​ 支持的版本: 16 ( 当前版本) / 15 / 14 / 13 / 12 ​ 不支持的版本: 11 / 10 / 9.6 / 9.5 /…

探索工业AI智能摄像机的高端科技

在当今快速发展的工业智能化领域,工业AI智能摄像机系列以其卓越的性能和多功能性在国内外备受关注(文末有国外工程师的评测链接)。搭载Raspberry Pi CM4支持的旨在广泛应用,涵盖从简单的条形码扫描到基于人工智能的工业环境中的缺…

7.1.SQL注入-基于函数报错的方式来利用updatexml()

基于函数报错的方式来进行利用-字符型(本页updatexml()) 前提条件是后台数据库没有屏蔽数据库语法报错信息 updatexml()方法详解 注释: 第一个参数,意思就是xml文档的名称 第二个参数,意思就是定位到xml文档中指定…