Linux多进程和多线程(三)进程间通讯-信号处理方式和自定义处理函数

  • 进程间通信之信号
    • 信号
    • 信号的种类
      • 信号在操作系统中的定义如下:
    • 信号的处理流程
    • 在 Linux 中对信号的处理⽅式
      • 自定义信号处理函数
    • 信号的发送
      • kill() 函数:
      • raise() 函数:
    • 示例 : 创建⼀个⼦进程,⼦进程通过信号暂停,⽗进程发送 终⽌信号
    • 等待信号
      • pause() 函数:
  • 信号的处理
    • ⽤户⾃定义处理基本的流程
      • 一. 实现⾃定义处理函数
      • 二.设置信号处理处理⽅式
    • 示例: 创建⼀个⼦进程, ⽗进程给⼦进程发送 SIGUSR1 信号,并使⽤⾃定义的处理函数处理信号

进程间通信之信号

信号

信号是在软件层次上 是⼀种通知机制, 对中断机制的⼀种模拟,是⼀种异步通信⽅式, ⼀般具有
如下特点:

1. 进程在运⾏过程中,随时可能被各种信号打断
2. 进程可以忽略, 或者去调⽤相应的函数去处理信号
3.进程⽆法预测到达的精准时间

在 Linux 中信号⼀般的来源如下

程序执⾏错误,如内存访问越界,数学运算除 0

由其他进程发送

通过控制终端发送 如 ctrl + c

⼦进程结束时向⽗进程发送的 SIGCLD 信号

程序中设定的定时器产⽣的 SIGALRM 信号

信号的种类

在 Linux 系统可以通过 kill -l 命令查看, 常⽤的信号列举如下

在这里插入图片描述

  • SIGINT 该信号在⽤户键⼊ INTR 字符 (通常是 Ctrl-C) 时发出,终端驱动程序发送此
    信号并送到前台进>程中的每⼀个进程。

  • SIGQUIT 该信号和 SIGINT 类似,但由 QUIT 字符 (通常是 Ctrl-) 来控制。

  • SIGILL 该信号在⼀个进程企图执⾏⼀条⾮法指令时 (可执⾏⽂件本身出现错误,或者
    试图执⾏数据段、堆栈溢出时) 发出。

  • SIGFPE 该信号在发⽣致命的算术运算错误时发出。这⾥不仅包括浮点运算错误,还
    包括溢出及除数 > 为 0 等其它所有的算术的错误。

  • SIGKILL 该信号⽤来⽴即结束程序的运⾏,并且不能被阻塞、处理和忽略。

  • SIGALRM 该信号当⼀个定时器到时的时候发出。

  • SIGSTOP 该信号⽤于暂停⼀个进程,且不能被阻塞、处理或忽略。

  • SIGTSTP 该信号⽤于交互停⽌进程,⽤户可键⼊ SUSP 字符时 (通常是 Ctrl-Z) 发出
    这个信号。

  • SIGCHLD ⼦进程改变状态时,⽗进程会收到这个信号

  • SIGABRT 进程异常中⽌

信号在操作系统中的定义如下:

#define SIGHUP       1
#define SIGINT       2
#define SIGQUIT      3
#define SIGILL       4
#define SIGTRAP      5
#define SIGABRT      6
#define SIGIOT       6
#define SIGBUS       7
#define SIGFPE       8
#define SIGKILL      9 
#define SIGUSR1     10 // 用户自定义信号
#define SIGSEGV     11
#define SIGUSR2     12
#define SIGPIPE     13
#define SIGALRM     14
#define SIGTERM     15
#define SIGSTKFLT   16
#define SIGCHLD     17
#define SIGCONT     18
#define SIGSTOP     19
#define SIGTSTP     20
#define SIGTTIN     21

信号的处理流程

  • 信号的发送 :可以由进程直接发送

  • 信号投递与处理 : 由内核进⾏投递给具体的进程并处理

在 Linux 中对信号的处理⽅式

  • 忽略信号, 即对信号不做任何处理,但是有两个信号不能忽略:即 SIGKILL 及
    SIGSTOP。

  • 捕捉信号, 定义信号处理函数,当信号发⽣时,执⾏相应的处理函数。

  • 执⾏缺省操作,Linux 对每种信号都规定了默认操作
    在这里插入图片描述

内核通过task_struct找到相应的进程,然后将信号的类型和进程号传递给信号处理函数。信号处理函数根据信号类型做相应的处理。

在内核中的⽤于管理进程的结构为 task_struct , 具体定义如下:
在这里插入图片描述

任务队列

内核把进程的列表存放在叫做任务队列(task list) 的双向循环链表中。链表中的每一 项都是类型为task_struct

备注:有些操作系统会把任务队列称为任务数组。但是Linux实现时使用的是队列而不是静态数组,所以称为任务队列

https://blog.csdn.net/qq_41453285/article/details/103743235
更多关于task_struct 的信息,请参考《深入理解LINUX内核》

记录进程信号和相应的处理方式
在这里插入图片描述

自定义信号处理函数

这种方式需要在程序中编写信号处理函数,并在程序内核中注册信号处理函数。

信号的发送

当由进程来发送信号时, 则可以调⽤ kill() 函数与 raise () 函数

kill() 函数:

用于向指定进程发送信号

函数头文件:

#include <signal.h>
#include <sys/types.h>

原型如下:

int kill(pid_t pid, int sig);

参数:

pid_t pid: 进程ID
int sig: 信号值

返回值:

- 成功: 0
- 失败: -1  并设置 errno

raise() 函数:

用于向当前进程发送信号

函数头文件:

#include <signal.h>
#include <sys/types.h>

原型如下:

int raise(int sig);

参数:

int sig: 信号值

返回值:

- 成功: 0
- 失败: -1  并设置 errno

示例 : 创建⼀个⼦进程,⼦进程通过信号暂停,⽗进程发送 终⽌信号

/** 创建⼀个⼦进程,⼦进程通过信号暂停,⽗进程发送 终⽌信号* */#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>
#include <sys/wait.h>int main(){pid_t child_pid; // ⼦进程ID  pid_t 类型在<sys/types.h>是⼀个整数类型,用来存储进程ID, 它是系统中⼀个进程的唯一标识符。系统中每个进程都有⼀个独⽴的pid。child_pid = fork(); // 创建⼀个⼦进程,⼦进程复制⽗进程的地址空间,并返回⼦进程的pid。if (child_pid ==-1){ // 创建失败perror("fork");// 输出错误信息exit(EXIT_FAILURE);// 退出程序} else if (child_pid == 0) { //只在⼦进程运行的代码//fprintf和printf的区别在于fprintf可以指定输出到哪个文件,printf默认输出到标准输出。//stdout是标准输出,输出到屏幕上,还有stderr是错误输出,输出到屏幕上。stdin是标准输入,输入从键盘上。fprintf(stdout, "子进程正在运行...子进程ID:%d\n", getpid());raise(SIGSTOP); // 发送SIGSTOP信号给⼦进程自己,暂停⼦进程的运行。fprintf(stdout, "子进程暂停自己后被父进程信号kill,不会打印这句话:%d\n", getpid());exit(EXIT_SUCCESS); // 退出⼦进程} else if (child_pid > 0) { // 父进程运行的代码int ret;sleep(2); // 父进程休眠2秒,等待⼦进程ret = kill(child_pid, SIGKILL);// 发送SIGKILL信号给⼦进程,终⽌⼦进程。//SIGKILL信号是强制终⽌进程的信号,它会杀死进程,并释放资源, 但是它不能被捕获和处理。if (ret == -1){ // 发送失败perror("kill");// 输出错误信息exit(EXIT_FAILURE);//退出程序} else {fprintf(stdout, "父进程终⽌⼦进程成功!\n");wait(NULL); // 等待⼦进程结束,防止⼦进程僵死。//wait函数传入NULL,表示等待任意⼦进程结束,返回值是⼦进程的终⽌状态。}}return 0;
}

运行结果:

子进程正在运行...子进程ID:3957
父进程终⽌⼦进程成功!

等待信号

在进程没有结束时,进程在任何时间点都可以接受到信号

需要阻塞等待信号时,则可以调⽤ pause() 函数

pause() 函数:

用于进程暂停,直到收到信号

函数头文件:

#include <signal.h>

原型如下:

int pause(void);

参数:

返回值:

- 成功: 0
- 失败: -1  并设置 errno

示例 : 创建创建⼀个⼦进程, ⽗进程调⽤ pause 函数,⼦进程给⽗进程发送信号

int main(){pid_t child_pid; // ⼦进程ID  pid_t 类型在<sys/types.h>是⼀个整数类型,用来存储进程ID, 它是系统中⼀个进程的唯一标识符。系统中每个进程都有⼀个独⽴的pid。child_pid = fork(); // 创建⼀个⼦进程,⼦进程复制⽗进程的地址空间,并返回⼦进程的pid。if (child_pid ==-1){ // 创建失败perror("fork");// 输出错误信息exit(EXIT_FAILURE);// 退出程序} else if (child_pid == 0) { //只在⼦进程运行的代码//fprintf和printf的区别在于fprintf可以指定输出到哪个文件,printf默认输出到标准输出。//stdout是标准输出,输出到屏幕上,还有stderr是错误输出,输出到屏幕上。stdin是标准输入,输入从键盘上。fprintf(stdout, "子进程正在运行...子进程ID:%d\n", getpid());sleep(1); // ⼦进程休眠1秒kill(getppid(), SIGUSR1); // 发送SIGUSR1信号(用户自定义信号1)给父进程,这个信号默认是结束进程fprintf(stdout, "发送SIGUSR1信号(用户自定义信号1)给父进程:%d\n", getpid());exit(EXIT_SUCCESS); // 退出⼦进程} else if (child_pid > 0) { // 父进程运行的代码fprintf(stdout, "父进程...父进程ID:%d\n", getpid());pause(); // 父进程阻塞,等待信号fprintf(stdout, "父进程...父进程收到信号");wait(NULL);}return 0;
}

运行结果:

父进程...父进程ID:4782
子进程正在运行...子进程ID:4783
发送SIGUSR1信号(用户自定义信号1)给父进程:4783

pause 函数⼀定要在收到信号之前调⽤,让进程进⼊到睡眠状态

信号的处理

信号是由操作系统内核发送给指定进程, 进程收到信号后则需要进⾏处理

处理信号三种⽅式:

  • 忽略 : 不进⾏处理
  • 默认 : 按照信号的默认⽅式处理
  • ⽤户⾃定义 : 通过⽤户实现⾃定义处理函数来处理,由内核来进⾏调⽤

三种方式都是内核来处理.
⾃定义处理函数:需要将信号处理函数地址注册到内核中, 并在信号发⽣时, 由内核调用相应的处理函数。


对于每种信号都有相应的默认处理⽅式

进程退出:

SIGALRM,SIGHUP,SIGINT,SIGKILL,SIGPIPE,SIGPOLL,SIGPROF,SIGSYS,SIGTERM,

SIGUSR1,SIGUSR2,SIGVTALRM

进程忽略

SIGCHLD,SIGPWR,SIGURG,SIGWINCH

进程暂停

SIGSTOP,SIGTSTP,SIGTTIN,SIGTTOU


⽤户⾃定义处理基本的流程

一. 实现⾃定义处理函数

⽤户实现⾃定义处理函数, 需要按照下⾯的形式定义

typedef void (*sighandler_t)(int);typedef void (*)(int) sighandler_t
//sighandler_t 是信号处理函数的类型, 它是一个函数指针, 指向信号处理函数的起始地址。

二.设置信号处理处理⽅式

通过 signal 函数设置信号处理⽅式

函数头⽂件

#include <signal.h>

函数原型

sighandler_t signal(int signum, sighandler_t handler);//sighandler_t 是信号处理函数的类型, 它是一个函数指针, 指向信号处理函数的起始地址。

函数功能

设置信号的处理⽅式, 如果是⾃定义处理⽅式,提供函数地址,注册到内核中

函数参数

signum : 信号编号 handler : 信号处理⽅式- SIG_IGN (1): 忽略信号//信号处理函数不做任何事情- SIG_DFL (0): 按照默认⽅式处理//信号处理函数是系统默认的处理函数- 其他 : 自定义处理函数的地址//信号处理函数是⾃定义的处理函数

三种处理⽅式互斥,一般选择一种即可。

返回值

成功 : 信号处理函数的地址

失败 : 返回 SIG_ERR (-1) 并设置 errno

在这里插入图片描述

示例: 创建⼀个⼦进程, ⽗进程给⼦进程发送 SIGUSR1 信号,并使⽤⾃定义的处理函数处理信号

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <signal.h>
#include <unistd.h>
#include <sys/wait.h>
/** 创建⼀个⼦进程, ⽗进程给⼦进程发送 SIGUSR1 信号,并使⽤⾃定义的处理函数处理信号** *///信号处理函数,通过signal函数关联对应的信号
//@param  sign 当前接受到的信号(与这个处理函数相关联的)
void sig_handler(int sign);int main(int argc, char *argv[]) {__sighandler_t ret;//信号处理函数的返回值ret= signal(SIGUSR1, sig_handler);//关联信号处理函数if(ret==SIG_ERR){//出错处理perror("signal");//出错处理exit(1);//退出程序}//成功返回的信号处理函数指针//创建⼀个⼦进程pid_t pid=fork();if(pid==-1){//出错处理perror("fork");//出错处理exit(1);//退出程序}else if(pid==0){//⼦进程printf("⼦进程开始\n");//使⽤⾃定义的处理函数处理信号pause();//函数处理后回到子进程,继续执行printf("⼦进程结束\n");}else{//⽗进程sleep(1);//等待⼦进程启动printf("⽗进程发送信号\n");//给⼦进程发送 SIGUSR1 信号//信号投递是由内核完成,通过task_struct找到对应的进程,再去调用信号处理函数kill(pid, SIGUSR1);//等待⼦进程结束wait(NULL);}return 0;
}
//信号处理函数
void sig_handler(int sign){//处理信号printf("信号处理函数运行 %s\n", strsignal(sign));//strsignal函数将信号转换为字符串,返回一个字符串,描述信号编号的含义
}

运行结果:

⼦进程开始
⽗进程发送信号
信号处理函数运行 User defined signal 1

eep(1);//等待⼦进程启动
printf(“⽗进程发送信号\n”);
//给⼦进程发送 SIGUSR1 信号
//信号投递是由内核完成,通过task_struct找到对应的进程,再去调用信号处理函数
kill(pid, SIGUSR1);
//等待⼦进程结束
wait(NULL);
}
return 0;
}
//信号处理函数
void sig_handler(int sign){
//处理信号
printf(“信号处理函数运行 %s\n”, strsignal(sign));//strsignal函数将信号转换为字符串,返回一个字符串,描述信号编号的含义
}


运行结果:

⼦进程开始
⽗进程发送信号
信号处理函数运行 User defined signal 1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/38098.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

风控图算法之社群发现算法(小数据集Python版)

风控图算法之社群发现算法&#xff08;小数据集Python版&#xff09; 在风险控制领域&#xff0c;图算法扮演着日益重要的角色。&#xff08;这方面的资料有很多&#xff0c;不再赘述&#xff09; 图算法在风控场景的应用 图分析方法在业务风控中的应用 特别是社群发现算法&a…

基于pytorch实现的 MobileViT 的图像识别(迁移学习)

1、介绍 MobileViT 轻量级的分类识别网络&#xff0c;结合了CNN卷积和Transformer 混合的网络架构 关于更多介绍可以自行百度&#xff0c;本文通过pytorchpython进行实现 更多基础的图像分类网络&#xff0c;参考&#xff1a;图像分类_听风吹等浪起的博客-CSDN博客 2、相关代…

npm简介与安装方法/管理与依赖管理/脚本命令与自定义

npm简介与安装方法 什么是npm&#xff1f; npm&#xff08;Node Package Manager&#xff09;是Node.js的包管理工具和包管理系统&#xff0c;广泛用于JavaScript生态系统中。npm主要有以下几个功能&#xff1a; 包管理器&#xff1a;安装、更新、卸载Node.js包。项目管理工…

DB-GPT 文档切分报错

感谢阅读 配置完知识库&#xff0c;进行切分报错切分完成后&#xff0c;进行问答时后台日志报错 配置完知识库&#xff0c;进行切分报错 报的错如下 document sync error cryptography>3.1 is required for AES algorithm pip install -U cryptography 之后重新运行程序 …

SimpleService 一个简单的Windows Service定时服务

SimpleService 介绍 一个简单的Windows Service定时服务 SimpleService: 一个简单的Windows Service定时服务 使用说明

kimi AI,文生流程图,一句话kimi当场出图

kimi AI善于读长文、搜网页&#xff0c;主打功能包括整理资料、解读文件、辅助编程、文案写作等。 今天我们就让kimi帮我们一键生成流程图&#xff0c;再也不用自己画了&#xff1a; 不看广告看疗效&#xff1a; 告诉kimi使用Mermaid直接生成流程图&#xff0c;kimi直接生成…

AI是如何与快充技术结合的?

针对AI技术在快充领域的运用&#xff0c;我们可以进一步深入探讨AI如何与快充技术结合&#xff0c;提升充电效率和用户体验。以下是一些具体的AI技术在快充领域的应用场景&#xff1a; 一、智能充电算法 学习充电模式&#xff1a;AI算法可以学习用户的充电习惯&#xff0c;比…

容器技术-docker4

一、docker资源限制 在使用 docker 运行容器时&#xff0c;一台主机上可能会运行几百个容器&#xff0c;这些容器虽然互相隔离&#xff0c;但是底层却使用着相同的 CPU、内存和磁盘资源。如果不对容器使用的资源进行限制&#xff0c;那么容器之间会互相影响&#xff0c;小的来说…

获取键盘事件的keyCode属性

获取键盘事件的keyCode属性 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;在本文中&#xff0c;我们将深入探讨在Java中如何获取键盘事件的keyCode属性。键盘事…

gin 服务端无法使用sse流式nginx配置

我在本地使用 gin 可以流式的将大模型数据传递给前端。但是当我部署到服务器中时&#xff0c;会阻塞一段时间&#xff0c;然后显示一大段文本。 起初我怀疑是gin 没有及时将数据刷到管道中&#xff0c;但是经过测试&#xff0c;还是会阻塞。 c.Writer.(http.Flusher).Flush()最…

(超详细)数据结构——“栈”的深度解析

前言&#xff1a; 在前几章我们介绍了线性表的基本概念&#xff0c;也讲解了包括顺序表&#xff0c;单链表&#xff0c;双向链表等线性表&#xff0c;相信大家已经对线性表比较熟悉了&#xff0c;今天我们要实现线性表的另一种结构——栈。 1.栈的概念 栈&#xff1a;一种特殊…

【Docker】存储数据卷

目录 1、挂载数据卷到容器里 2、查询挂载文件 3、容器与主机之间映射共享卷 4、三个容器之间使用共享卷 5、卷数据的备份与恢复 5.1 备份 5.2 恢复 1、挂载数据卷到容器里 docker run -itd --name test02 -v /data nginx docker exec -it test02 bashls / docker inspe…

如何对C++代码进行性能调优

对C代码进行性能调优是一个涉及多个方面的过程&#xff0c;包括代码优化、数据结构设计、算法选择、内存管理、并行化等多个方面。以下是一些常用的C性能调优技巧&#xff1a; 代码优化&#xff1a; 避免不必要的复制&#xff1a;使用引用或指针传递大型对象或数据结构。常量优…

解决IDEA的Web项目右键无法创建Servlet问题

右键新建没有servlet? 在pom.xml文件中需要导入servlet依赖&#xff0c;很简单的&#xff0c;别担心&#xff0c;就20秒解决 看我操作&#xff01;&#xff01;&#xff01; 1. 找到自动生成的pom.xml文件 只要你创建了maven项目&#xff0c;就会自动生成pom.xml文件&#xf…

ESP32-C3模组上跑通MQTT(7)—— tcp例程(2)

接前一篇文章:ESP32-C3模组上跑通MQTT(6)—— tcp例程(1) 《ESP32-C3 物联网工程开发实战》 一分钟了解MQTT协议 ESP32 MQTT API指南-CSDN博客 ESP-IDF MQTT 示例入门_mqtt outbox-CSDN博客 ESP32用自签CA进行MQTT的TLS双向认证通信_esp32 mqtt ssl-CSDN博客 特此致谢…

qiankun微前端:qiankun+vite+vue3+ts(未完待续..)

目录 什么是微前端 目前现有的微前端 好处 使用 子应用的页面在主应用里显示 什么是微前端 微前端是一种多个团队通过独立发布功能的方式来共同构建现代化 web 应用的技术手段及方法策略。 我的理解就是将一个大型的前端应用拆分成多个模块&#xff0c;每个微前端模块可以由…

目标检测的常用算法和框架

一、常见算法 下面介绍几种常见的目标检测算法: Haar特征+级联分类器:该算法使用Haar特征作为特征提取器,并通过级联分类器来检测目标。这种算法运行速度快,在处理实时视频时表现良好,但对于复杂场景的目标检测效果可能不理想。 HOG特征+SVM:该算法使用方向梯度直方图(…

C++ 设计模式之中介者模式

C 设计模式之中介者模式 简介 1、中介者模式&#xff08;Mediator&#xff09;是一种行为型设计模式&#xff0c;它用于减少对象之间的直接耦合&#xff0c;使得这些对象可以松散地耦合在一起&#xff0c;并且可以通过一个中介者对象来间接地交互。中介者模式通常用于一组对象…

Linux基础篇——目录结构

基本介绍 Linux的文件系统是采用级层式的树状目录结构&#xff0c;在此结构中的最上层是根目录"/"&#xff0c;然后在根目录下再创建其他的目录 在Linux中&#xff0c;有一句经典的话&#xff1a;在Linux世界里&#xff0c;一切皆文件 Linux中根目录下的目录 具体的…

木各力“GERRI”被“GREE”格力无效宣告成功

近日“GERRI”被“GREE”格力无效宣告成功&#xff0c;“GERRI”和“GREE”近似不&#xff0c;如果很近似当初就不会通过初审和下商标注册证&#xff0c;但是如果涉及知名商标和驰名商标&#xff0c;人家就可以异议和无效。 “GERRI”在被无效宣告时&#xff0c;引用了6个相关的…