boost asio异步服务器(4)处理粘包

粘包的产生

当客户端发送多个数据包给服务器时,服务器底层的tcp接收缓冲区收到的数据为粘连在一起的。这种情况的产生通常是服务器端处理数据的速率不如客户端的发送速率的情况。比如:客户端1s内连续发送了两个hello world!,服务器过了2s才接收数据,那一次性读出两个hello world!

tcp底层的安全和效率机制不允许字节数特别少的小包发送频率过高,tcp会在底层累计数据长度到一定大小才一起发送,比如连续发送1字节的数据要累计到多个字节才发送。

粘包处理

处理粘包的方式主要采用应用层定义收发包格式的方式,这个过程俗称切包处理,常用的协议被称为tlv协议(消息id+消息长度+消息内容)。

tlv

TLV(Type-Length-Value)是一种通信协议,用于在通信中传输结构化数据。它将数据分为三个部分:类型(Type)、长度(Length)和值(Value),每个部分都以固定的格式进行编码和解码。

但是我下边的格式并不是标准的tlv格式,而是采用的lv模式,即只包含length和value。

完善消息节点

class MsgNode {
public://这里的构造方法主要方便后续调用Send接口构造消息节点MsgNode(char* msg, short data_len) : total_len(data_len + HEAD_LENGTH), cur_len(0) {_data = new char[total_len + 1];memcpy(_data, &data_len, HEAD_LENGTH);memcpy(_data + HEAD_LENGTH, msg, data_len);_data[total_len] = '\0';}//这里的构造方法则是用于在进行切包过程中构造处理数据的节点MsgNode(short data_len) :total_len(data_len), cur_len(0) {_data = new char[total_len + 1];}//Clear方法是用于清理节点的数据,避免多次构造析构节点void Clear() {memset(_data, 0, total_len);cur_len = 0;}~MsgNode() {delete[] _data;}
private:friend class Session;//表示已经处理的数据长度int cur_len;//表示处理数据的总长度int total_len;//表示数据的首地址char* _data;
};

完善两个构造函数和添加Clear函数

1、第一个构造方法主要方便后续调用Send接口构造消息节点
2、第二个构造方法则是用于在进行切包过程中构造处理数据的节点
3、Clear方法是用于清理节点的数据,避免多次构造析构节点

session类完善

_recv_msg_node用于存放收到数据包中的数据

_b_head_parse表示头部是否解析完成

_recv_head_node用于存放接收到数据包中的头部信息

完善hand_read回调函数

void Session::handle_read(const boost::system::error_code& ec, size_t bytes_transferred,std::shared_ptr<Session> self_shared) {if (ec) {std::cout << "read error, error code: " << ec.value() <<" read message: " << ec.message() << std::endl;Close();server_->ClearSession(uuid);}else {PrintRecvData(data_, bytes_transferred);std::chrono::milliseconds dura(2000);std::this_thread::sleep_for(dura);//已经移动的字节数int copy_len = 0;while (bytes_transferred) {//头部尚未解析完成if (!_b_head_parse) {//收到的数据不足头部大小,这种情况很少发生if (bytes_transferred + _recv_head_node->cur_len < HEAD_LENGTH) {memcpy(_recv_head_node->_data + _recv_head_node->cur_len, data_ + copy_len, bytes_transferred);_recv_head_node->cur_len += bytes_transferred;memset(data_, 0, MAX_LENGTH);sock_.async_read_some(boost::asio::buffer(data_, MAX_LENGTH),std::bind(&Session::handle_read, this,std::placeholders::_1, std::placeholders::_2, self_shared));return;}//走到这里,说明收到的数据大于头部,可能是一个粘连的数据包,但是首先需要将头部节点两字节读完//处理头部剩余未复制的长度int head_remain = HEAD_LENGTH - _recv_head_node->cur_len;if (head_remain) {memcpy(_recv_head_node->_data + _recv_head_node->cur_len, data_ + copy_len, head_remain);//更新已处理的数据copy_len += head_remain;/** 这里不能更新头部节点的cur_len。* 因为* 1、当一次进来cur_len等于0,处理之后的偏移量copy_len就为2* 2、当头部未读取完成,后续读取会修正为正确的偏移量(但是种情况很少发生)* 3、之后的读取头部信息都会发生覆盖*///_recv_head_node->cur_len += head_remain;bytes_transferred -= head_remain;}//获取头部数据short data_len = 0;memcpy(&data_len, _recv_head_node->_data, HEAD_LENGTH);std::cout << "data_len is " << data_len << std::endl;if (data_len > MAX_LENGTH) {std::cout << "invalid data length is " << data_len << std::endl;server_->ClearSession(uuid);return;}//头部节点处理完成,就可以开始处理数据域的数据节点_recv_msg_node = std::make_shared<MsgNode>(data_len);//消息长度小于头部规定长度,说明数据未收全,则先将消息放到接收节点中if (bytes_transferred < data_len) {memcpy(_recv_msg_node->_data + _recv_msg_node->cur_len, data_ + copy_len, bytes_transferred);_recv_msg_node->cur_len += bytes_transferred;memset(data_, 0, MAX_LENGTH);sock_.async_read_some(boost::asio::buffer(data_, MAX_LENGTH),std::bind(&Session::handle_read, this,std::placeholders::_1, std::placeholders::_2, self_shared));//表示头部处理完成,当下次进来的时候,就会直接跳过头部处理环节_b_head_parse = true;return;}//走到这里表示消息长度大于头部规定长度,这里可能是一个完整包,也可能是多个粘连的包memcpy(_recv_msg_node->_data + _recv_msg_node->cur_len, data_ + copy_len, data_len);_recv_msg_node->cur_len += data_len;copy_len += data_len;bytes_transferred -= data_len;_recv_msg_node->_data[_recv_msg_node->total_len] = '\0';std::cout << "receive data is: " << _recv_msg_node->_data << std::endl;//调用send发送给客户端Send(_recv_msg_node->_data, _recv_msg_node->total_len);//继续轮询处理下个未处理的数据,重置数据包和头部解析的情况_b_head_parse = false;_recv_msg_node->Clear();//说明这不是一个多个粘连的数据包if (bytes_transferred <= 0) {memset(data_, 0, MAX_LENGTH);sock_.async_read_some(boost::asio::buffer(data_, MAX_LENGTH),std::bind(&Session::handle_read, this,std::placeholders::_1, std::placeholders::_2, self_shared));return;}//走到这里说明这就是一个多个粘连的数据包continue;}//走到这里就说明头部是已经解析完成的,是处理数据未收全的情况int remain_msg = _recv_msg_node->total_len - _recv_msg_node->cur_len;//说明收到的数据仍然不足头部规定大小的情况if (bytes_transferred < remain_msg) {memcpy(_recv_msg_node->_data + _recv_msg_node->cur_len, data_ + copy_len, bytes_transferred);_recv_msg_node->cur_len += bytes_transferred;memset(data_, 0, MAX_LENGTH);sock_.async_read_some(boost::asio::buffer(data_, MAX_LENGTH),std::bind(&Session::handle_read, this,std::placeholders::_1, std::placeholders::_2, self_shared));return;}//走到这里说明收到的数据是大于等于头部规定大小的,接收到的数据可能是个完整的数据包,也可能多个粘连的数据包memcpy(_recv_msg_node->_data + _recv_msg_node->cur_len, data_ + copy_len, remain_msg);_recv_msg_node->cur_len += remain_msg;bytes_transferred -= remain_msg;copy_len += remain_msg;_recv_msg_node->_data[_recv_msg_node->total_len] = '\0';std::cout << "receive data is: " << _recv_msg_node->_data << std::endl;//处理完当前数据包的分割后,调用send接口向客户端发送回去Send(_recv_msg_node->_data, _recv_msg_node->total_len);//继续轮询处理下个数据包,重置接收数据节点和头部解析情况_b_head_parse = false;_recv_msg_node->Clear();//说明数据包并不是粘连的if (bytes_transferred <= 0) {memset(data_, 0, MAX_LENGTH);sock_.async_read_some(boost::asio::buffer(data_, MAX_LENGTH),std::bind(&Session::handle_read, this,std::placeholders::_1, std::placeholders::_2, self_shared));return;}//走到这里说明数据包是粘连的continue;	}}
}

这里hand_read函数的完善逻辑代码比较长,其中的注释给的比较详细,需要各位仔细读。但是逻辑可能头一两次读可能还是会有些蒙,多读几遍可能就会好得多。

这里还是得必要得说一下,我们都知道异步读写函数得回调函数中的参数bytes_transferred表示已经读取到的字节数,但是我们在这里还是需要对这些已经读到的数据进行处理。其中定义copy_len表示已经处理的字节数,bytes_transferred则表示为还未处理的数据(尽管已经被读取到了,但是还是尚未被处理,需要好好理解下)。

这里在session类中还定义了两个宏,MAX_LENGTH表示数据包的最大长度,就是1024*2字节。HEAD_LENGTH表示头部长度,就是2字节。

这里我也画了一个逻辑图供大家梳理这里的代码逻辑,希望能对大家理解有帮助。

粘包现象的测试

在session类中写一个打印函数,在每次触发读事件回调的时候调用下这个函数。这里打印的是tcp缓冲区的数据,boost asio从tcp已经是已经做了将tcp缓冲区的数据拿出来的,所以这里打印即可。

为了制造粘包现象,我们可以让服务器端隔2s处理一次读写,而客户端则不停的发送和读取就能制造出粘包现象了。下边是提供的客户端的代码。

#include <iostream>
#include <boost/asio.hpp>
#include <thread>
using namespace std;
using namespace boost::asio::ip;
const int MAX_LENGTH = 1024 * 2;
const int HEAD_LENGTH = 2;
int main()
{//测试粘包现象客户端try {//创建上下文服务boost::asio::io_context   ioc;//构造endpointtcp::endpoint  remote_ep(address::from_string("127.0.0.1"), 1234);tcp::socket  sock(ioc);boost::system::error_code   error = boost::asio::error::host_not_found;sock.connect(remote_ep, error);if (error) {cout << "connect failed, code is " << error.value() << " error msg is " << error.message();return 0;}thread send_thread([&sock] {for (;;) {this_thread::sleep_for(std::chrono::milliseconds(2));const char* request = "hello world!";size_t request_length = strlen(request);char send_data[MAX_LENGTH] = { 0 };memcpy(send_data, &request_length, 2);memcpy(send_data + 2, request, request_length);boost::asio::write(sock, boost::asio::buffer(send_data, request_length + 2));}});thread recv_thread([&sock] {for (;;) {this_thread::sleep_for(std::chrono::milliseconds(2));cout << "begin to receive..." << endl;char reply_head[HEAD_LENGTH];size_t reply_length = boost::asio::read(sock, boost::asio::buffer(reply_head, HEAD_LENGTH));short msglen = 0;memcpy(&msglen, reply_head, HEAD_LENGTH);char msg[MAX_LENGTH] = { 0 };size_t  msg_length = boost::asio::read(sock, boost::asio::buffer(msg, msglen));std::cout << "Reply is: ";std::cout.write(msg, msglen) << endl;std::cout << "Reply len is " << msglen;std::cout << "\n";}});send_thread.join();recv_thread.join();}catch (std::exception& e) {std::cerr << "Exception: " << e.what() << endl;}return 0;
}

现象如下图,测试环境Windows visual studio 

完整服务端代码:codes-C++: C++学习 - Gitee.com

这里的echo服务器实现了粘包的处理,但是在不同的平台下仍存在收发数据异常的问题,其根本原因就是平台大小端的差异。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/37528.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MCU解决800V电动汽车牵引逆变器的常见设计挑战的3种方式

电动汽车 (EV) 牵引逆变器是电动汽车的。它将高压电池的直流电转换为多相&#xff08;通常为三相&#xff09;交流电以驱动牵引电机&#xff0c;并控制制动产生的能量再生。电动汽车电子产品正在从 400V 转向 800V 架构&#xff0c;这有望实现&#xff1a; 快速充电 – 在相同…

WPF 2024 金九银十 最新 高级 架构 面试题 C#

含入门 初级 中级 高级 不同级别WPF的面试题 相关面试题 redis安装说明书 http://t.csdnimg.cn/iM260 单体并发瓶颈 redis sqlsever mysql多少 http://t.csdnimg.cn/DTXIh Redis高频面试题http://t.csdnimg.cn/FDOnv 数据库SqlServer笔试题 数据库SqlServer笔试题-CSDN博客 SQL…

绝了!Stable Diffusion做AI治愈图片视频,用来做副业简直无敌!10分钟做一个爆款视频保姆教程

一 项目分析 这个治愈类视频的玩法是通过AI生成日常生活场景&#xff0c;制作的vlog&#xff0c;有这样的一个号&#xff0c;发布了几条作品&#xff0c;就涨粉了2000多&#xff0c;点赞7000多&#xff0c;非常的受欢迎。 下面给大家看下这种作品是什么样的&#xff0c;如图所…

探索高效开发神器:Blackbox AI(免费编程助手)

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 &#x1f916; 想要代码生成&#xff1f;&#x1f44c; &#x1f4ac; 需要和AI聊天解决难题&#xff1f;&#…

Ubuntu使用c++

Ubuntu使用c 一、安装编译器和开发工具二、创建一个c文件并运行1.创建一个c2.编译运行 一、安装编译器和开发工具 先安装vim sudo apt install vim再安装GUN编译器合集&#xff08;GCC&#xff09; sudo apt install build-essential使用g -v查看版本确定安装成功 二、创建…

Javaweb-初学

1.利用springboot开发一个web应用 简要流程&#xff0c;如下图 2.如何创建一个springboot的项目&#xff0c;下面两张图片是重点关注 第一张图片记得和图片一样改一下路径 第二张就是勾一个选项 3.第一个简单的springboot应用的开发 根据如下步骤进行操作 首先顶部要标识Res…

TensorFlow的学习1.2-基本概念

TensorFlow的学习2-基本概念 1. 张量&#xff08;Tensor&#xff09;2. 变量&#xff08;Variable&#xff09;3. 操作&#xff08;Operation&#xff09;4. 计算图&#xff08;Computational Graph&#xff09;5. 会话&#xff08;Session&#xff09;6. Eager Execution7. 数…

LinkedIn被封原因和解封方法

对于初识领英和对领英生态规则不熟悉的人来说&#xff0c;很容易造成领英账号被封号(被限制登录)的情况&#xff0c;那么如何才能避免和解决领英帐号被封号(被限制登录)的难题呢&#xff1f; 领英帐号被封号或被限制登录主要会有两类情况。 首先要搞清楚&#xff0c; Linkedi…

IP白名单及其作用解析

在网络安全领域&#xff0c;IP白名单是一项至关重要的策略&#xff0c;它允许特定的IP地址或地址范围访问网络资源&#xff0c;从而确保只有受信任的终端能够连接。下面&#xff0c;我们将深入探讨IP白名单的定义、作用以及实施时的关键考虑因素。 一、IP白名单的定义 IP白名单…

HTML与Python生成验证码的对比分析

前言 验证码&#xff08;CAPTCHA&#xff09;是确保用户行为为人类而非机器人自动执行的一种安全机制。通过图形、文字、或其他手段生成复杂的验证码来防止自动化攻击是一种常见的方法。本文将对比分析使用HTML与JavaScript和Python生成验证码的两种方式&#xff0c;探讨各自的…

【scau大数据原理】期末复习——堂测题

一、集群安装知识 启动集群的命令start-all.sh位于 Hadoop安装目录的sbin文件夹 目录下。 bin文件夹下包含常见的Hadoop,yarn命令&#xff1b;sbin命令下包含集群的启动、停止命令。 启动集群的命令start-all.sh包含 同时启动start-dfs.sh和start-yarn.sh 功能。…

AI与Python共舞:如何利用深度学习优化推荐系统?

AI与Python共舞&#xff1a;如何利用深度学习优化推荐系统&#xff1f; 当你在浏览新闻、电影或是购物平台时&#xff0c;那些仿佛读懂你心思的个性化推荐背后&#xff0c;正是AI技术与Python语言的精妙协作。今天&#xff0c;我们将通过一个实际案例&#xff0c;探索如何利用…

Python 面试【中级】

欢迎莅临我的博客 &#x1f49d;&#x1f49d;&#x1f49d;&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

已解决javax.xml.bind.MarshalException:在RMI中,参数或返回值无法被编组的正确解决方法,亲测有效!!!

已解决javax.xml.bind.MarshalException&#xff1a;在RMI中&#xff0c;参数或返回值无法被编组的正确解决方法&#xff0c;亲测有效&#xff01;&#xff01;&#xff01; 目录 问题分析 出现问题的场景 服务器端代码 客户端代码 报错原因 解决思路 解决方法 1. 实现…

大数据面试题之Hive(1)

说下为什么要使用Hive?Hive的优缺点?Hive的作用是什么? 说下Hive是什么?跟数据仓库区别? Hive架构 Hive内部表和外部表的区别? 为什么内部表的删除&#xff0c;就会将数据全部删除&#xff0c;而外部表只删除表结构?为什么用外部表更好? Hive建表语句?创建表时使…

Vite:打包时去除console

需求描述 在生产环境下&#xff0c;Vite打包项目时&#xff0c;需要去除开发时加入的console、debugger调试信息&#xff0c;但是又不想引入terser。 解决方案 esbuild 参考&#xff1a; esbuild - API 修改配置 修改vite.config.js配置文件&#xff0c;新增配置项如下&…

深入了解语音识别:Distil-Whisper

Distil-Whisper模型概述 1.1 Distil-Whisper的背景与意义 随着语音识别技术的不断发展&#xff0c;模型的大小和计算复杂度成为了制约其广泛应用的重要因素。特别是在边缘设备和实时应用场景中&#xff0c;对模型的效率和性能提出了更高的要求。Distil-Whisper模型的提出&…

c++指针和引用之高难度(二)习题讲解

1.【单选题】 int a[4] { 1001,1002,1003,1004 }&#xff1b; int* p{ &a[1] }; p[1] ? A 1001 B 1002 C 1003 解析&#xff1a;这道题考察了指针和数组可以混用。p 指向了 数组 a[0] 的地址&#xff0c;也就是 1002 的地址&#xff0c;此时 *p p[0]…

axios发送数据的几种方式

axios 发送数据的几种方式 1、最简单的方式是将参数直接拼接在 URL 上&#xff0c;这通常用于传递少量的数据&#xff0c;例如资源的 ID。 const id 12; axios.delete(https://api.example.com/${id}).then(response > {console.log(Resource deleted successfully:, res…

Win11下安装多个JDK版本,并切换

Windows11下安装多个JDK版本,并切换 前言步骤1、前期准备2、版本切换思考前言 一台电脑可以同时安装多个版本 jdk,建议两个,最多不超三个。安装多个JDK版本可能会占用较多的磁盘空间。此外,同时运行多个 JDK 版本可能会对系统性能产生一定的影响。   切换 JDK 有两种方式…