一文搞懂Linux多线程【下】

目录

🚩多线程代码的健壮性

 🚩多线程控制

🚩线程返回值问题

🚩关于Linux线程库

 🚩对Linux线程简单的封装

 


 在观看本博客之前,建议大家先看一文搞懂Linux多线程【上】由于上一篇博客篇幅太长,为了更好的阅读体验,我拆成了两篇博客。那么接下来,在上一篇的基础上,我们继续学习Linux信号部分。今天,我们主要学习Linux多线程控制问题。

🚩多线程代码的健壮性

一份代码写的如何,一项重要的指标就是这份代码的健壮性

我们来写一份代码:

#include<pthread.h>
#include<iostream>
#include<unistd.h>
#include<cassert>
using namespace std;int g_val=0;
void* pthread_routine(void *args)
{while(1){cout<<"我是新进程,我正在运行,g_val:"<< g_val++<<"  &g_val: "<<&g_val<<endl;int n=0;n=n/0;//  发生除零错误,sleep(1);}}
int main()
{pthread_t tid;int n=pthread_create(&tid,nullptr,pthread_routine,(void *)"thread one");assert(n==0);(void)n;while(1){cout<<"我是主进程,我正在运行,g_val:"<<g_val<<"   &g_val:"<<&g_val<<endl;sleep(1);}return 0;}

在新线程中,出现了除零错误。

我们发现:新线程和主线程一起被干掉了。为什么?

这是因为代码中出现了错误,操作系统堆整个进程发送信号,操作系统要回收这个进程的资源,而线程是从进程那里得到的字眼,进程都没了,线程也就没法存在了。这个进程中的所有的线程都会被终止。

举个例子:在某互联网大厂,张三是一名程序员,他所在项目组敷个某个程序的开发。有一天,张三在写代码之前干了一瓶二锅头,代码中出现了很严重的bug,张三写代码出现了问题,就是这个项目组出现了问题。公司要对这个事情做出惩罚。所以就对张三的项目组长进行了谈话和警告。这个项目组就是一个进程,项目组的每一个成员就是一个线程(轻量级进程)。成员出现了错误,自然要惩罚这个项目组。

所以:多线程的代码的健壮性非常不好,这也是线程很大的一个缺点。 

 🚩多线程控制

Linux多线程控制是一个很重要的部分,这其中包括线程创建,线程等待,线程替换等等话题。

🚀Linux线程创建

我们在之前讲过如何创建线程,今天,我想一次性创建多个线程。让一个进程中包括若干个执行流。并同时运行。

#include<pthread.h>
#include<iostream>
#include<unistd.h>
#include<cassert>
using namespace std;
void *start_routine(void *args)
{char *buf=static_cast<char*>(args);int cnt=10;while(cnt){cout<<"我是新线程, "<<buf<<" cnt:"<<cnt<<endl;cnt--;sleep(1);}
}
int main()
{for(int i=0;i<10;i++){pthread_t id;char buffer[64];snprintf(buffer,sizeof buffer,"%s:%d","thread",i);pthread_create(&id,nullptr,start_routine,buffer);}while(1){cout<<"我是新线程,我一直在运行"<<endl;sleep(1);}
}

我们发现:我们创建的新线程的打印信息都是thread:9 。但是我们通过命令查询到我们的确创建了多个线程。但为什么都是9号呢?

我们知道,如上的两点代码是两个不同的执行流,究竟是哪个执行流先被执行呢?不确定,这是由编译器的调度顺序决定的。但是我们的运行的结果证明是主线程先被执行。为什么?

我们在for循环中定义了一个字符串,在pthread_create循环中传入了字符串的起始地址。有没有可能这块空间里的内容在被打印之前就被修改了呢?事实证明就是如此。主线程在新线程读取字符串内容之前,先将字符串的内容进行了修改。

这种现象的背后的根本原因是:字符串是一个共享资源,被所有线程所共享。由此造成这一系列问题。

如何更改这种现象呢?

#include<pthread.h>
#include<iostream>
#include<unistd.h>
#include<cassert>
using namespace std;class Threads
{
public:pthread_t id;char buffer[64];
};void* pthread_routine(void *args)
{int cnt=5; Threads *newThreads=static_cast<Threads *>(args); while(cnt--){  cout<<"new thread make success,name:  "<<newThreads->buffer<<" cnt:"<<cnt<<endl;    sleep(1);}// delete newThreads;// return nullptr;}
int main()
{for(int i=0;i<10;i++){Threads *id=new Threads();snprintf(id->buffer,sizeof(id->buffer),"%s:%d","thread",  i);pthread_create(&id->id,nullptr,pthread_routine,id);}while(1){cout<<"我是主进程,我正在运行"<<endl;sleep(1);}return 0;
}

我们顶定义一个类,每个线程被创建之初都会创建一个独立的类对象,这个类归线程所属,是私有的,所以不会出现上面的情况,关于这个类的相关数据储存在哪里,我们后面再谈。

 接下来,我们就改过的代码来回答几个问题:

在这份代码中,start_routine函数被几个执行流执行呢?10个

start_routine函数处于什么状态?可重入状态。

那这个函数是可重入函数吗?是的。


这个函数内的变量是被所有的线程共享的吗?我们实验一下:

我们对打印内容做稍稍改动:

我们发现:不同的执行流的cnt地址都不同,说明每一个线程都有一个独立的栈结构。 至于在什么位置,我们后面再说。

线程创建我们掌握了,那如何让线程终止呢?


🚀Linux线程终止

 方法一

 在线程对应的代码中,return返回,这个线程就终止了。

但是不能调用exit函数,我们说过exit是用来终止进程的,这时所有的线程都会跟着终止。

 方法二

调用pthread_exit函数

该函数的作用是终止调用这个函数的线程。

参数我们默认设为nullptr。 

方法三

一个跑起来的线程是可以被取消的。取消线程的函数为pthread_cancel。下面,我们简单介绍一下:

#include <pthread.h>int pthread_cancel(pthread_t thread);

 参数很简单,一看就明白

返回值:成功时返回0,失败错误码被设置。

下面,我们感受一下:

#include<pthread.h>
#include<iostream>
#include<unistd.h>
#include<cassert>
#include<vector>
#include<string>
using namespace std;class Threads
{
public:pthread_t id;char buffer[64];
};
class ThreadReturn
{
public:int return_result;int return_code;
};
void* pthread_routine(void *args)
{int cnt=5; Threads *newThreads=static_cast<Threads *>(args); while(cnt--){  cout<<"new thread make success,name:  "<<newThreads->buffer<<endl;sleep(1);} return (void*)123;
}
int main()
{vector<Threads *> iter;for(int i=0;i<10;i++){Threads *id=new Threads();snprintf(id->buffer,sizeof(id->buffer),"%s:%d","thread",  i);pthread_create(&id->id,nullptr,pthread_routine,id);iter.push_back(id);}sleep(5);
//    将创建的线程先取消一半for(int i=0;i<iter.size()/2;i++){pthread_cancel(iter[i]->id);cout<<"pthread_cancel:"<<iter[i]->buffer<<" successful"<<endl;}for(auto &it:iter){void *ret;int n = pthread_join(it->id, (void**)&ret); assert(n == 0);cout << "join " << it->id << " successful" <<(long long)ret<< endl;}cout<<"main thread quit"<<endl;}

如果一个线程被pthread_cancel取消,这个线程的返回值会被设为-1。 

🚀Linux线程等待

线程也是需要等待的,如果不等待,会造成类似僵尸进程问题,否则会造成内存泄漏。线程必须要被等待的。等待工作需要:

  1. 获取新线程的退出信息。
  2. 回收新线程对应的PCB资源,防止内存泄漏。

 所以,我们有必要且必须对线程进行等待,线程等待函数是pthread_join。下面,我们简单介绍一下这个函数。

参数:

第一个参数为:要等待的线程的thread,第二个我们先不需要了解,默认为nullptr。

返回值:

等待成功,返回0;等待失败,返回相应的错误码。

接下来,我们来试一下:

#include<pthread.h>
#include<iostream>
#include<unistd.h>
#include<cassert>
#include<vector>
using namespace std;class Threads
{
public:pthread_t id;char buffer[64];
};void* pthread_routine(void *args)
{int cnt=5; Threads *newThreads=static_cast<Threads *>(args); while(cnt--){  cout<<"new thread make success,name:  "<<newThreads->buffer<<" cnt:"<<cnt<<" &cnt"<<&cnt<<endl;    sleep(1);} pthread_exit(nullptr);
}
int main()
{vector<Threads *> iter;for(int i=0;i<10;i++){Threads *id=new Threads();snprintf(id->buffer,sizeof(id->buffer),"%s:%d","thread",  i);pthread_create(&id->id,nullptr,pthread_routine,id);iter.push_back(id);}for(auto &it:iter){int n=pthread_join(it->id,nullptr);assert(n==0);cout<<"join "<<it->id<<" successful"<<endl;}cout<<"main thread quit"<<endl;}

 运行一下:

如我们所见:所有的线程同一时间全部退出,接着主线程退出。

🚀Linux线程分离

  • ‘’默认情况下,新创建的线程是joinable的,线程退出后,需要对其进行pthread_join操作,否则无法释放资源,从而造成系统泄漏。
  • 如果不关心线程的返回值,join是一种负担,这个时候,我们可以告诉系统,当线程退出时,自动释放线程资源。
  • 一个线程被分离,就不能调用pthread_join()进行线程等待。

接下来,我们简单介绍一下几个函数。

pthread_self()

       #include <pthread.h>pthread_t pthread_self(void);

使用起来很简单,作用就是返回调用该线程的Id。由于太简单,这里我们就不再演示了。

pthread_detech()

       #include <pthread.h>int pthread_detach(pthread_t thread);

参数很简单,要对哪个线程进行分离,就传入哪个线程的Id。

返回值;成功的话,返回0;失败时,错误码被设置。

接下来,我们尝试使用一下:

 

#include<pthread.h>
#include<iostream>
#include<unistd.h>
#include<cassert>
#include<vector>
#include<string>
#include<cstring>
using namespace std;string changeId(const pthread_t  &id)
{char buffer[128];snprintf(buffer,sizeof buffer,"0x%x",id);return buffer;
}
void *start_routine(void *args)
{pthread_detach(pthread_self());int cnt=5;while(cnt){cout<<"new spthread running..... Id:"<< changeId(pthread_self())<<endl;sleep(1);cnt--;}
}
int main()
{pthread_t id;int n=pthread_create(&id,nullptr,start_routine,(void*)"thread noe");assert(n==0);(void)n;pthread_detach(id);sleep(5);return 0;
}

这个函数的调用原则为:一般让主线程对新线程进行分离,在主线程中进行调用。 

🚩线程返回值问题

我们刚刚在讲解pthread_join()和pthread_exit()函数时,我们一般将参数设为nullptr。至于原因,我们当时没说,现在我们就来分析一下这些参数。这些参数都是输出

一切的一切都在告诉我们这个参数不简单,我们先写个代码试一下这个参数的作用。

#include<pthread.h>
#include<iostream>
#include<unistd.h>
#include<cassert>
#include<vector>
using namespace std;class Threads
{
public:pthread_t id;char buffer[64];
};void* pthread_routine(void *args)
{int cnt=5; Threads *newThreads=static_cast<Threads *>(args); while(cnt--){  cout<<"new thread make success,name:  "<<newThreads->buffer<<endl;sleep(1);} return (void*)123;
}
int main()
{vector<Threads *> iter;for(int i=0;i<10;i++){Threads *id=new Threads();snprintf(id->buffer,sizeof(id->buffer),"%s:%d","thread",  i);pthread_create(&id->id,nullptr,pthread_routine,id);iter.push_back(id);}for(auto &it:iter){void *ret;int n=pthread_join(it->id,&ret);assert(n==0);cout<<"join "<<it->id<<" successful"<<" ret:"<<(long long)ret<<endl;}cout<<"main thread quit"<<endl;}

我们在线程调用的函数中返回了 return (void*)123; 

运行一下:

看,我们输入的123成功读取到了 。我们是怎么做到的?为了方便叙述,我将相关的代码块拎出来。

 请看如下图:pthread_join的第二个参数是输出型参数

在pthread库中,有一个变量存储的数据为void* 。我们将在线程函数的返回值强转成void*,存储在这个变量中,我们暂且将这个存储的数据叫做X数据。

现在,我们在代码层面同样定义了一个void*的变量ret。如何将X数据转到我们用户层面的ret中呢?办法有两种:

方案1:直接把x的值赋值给ret。因为他们都是一级指针,解引用就可以得到数据(123)。

方案2:对ret取地址,对数据X取地址,都得到二级指针,然进行赋值,再解引用得到数据(123)。

在这里,OS采用的是第二种方式。因为我们调用的是函数来获取,无法实现简单的赋值。

接下来,我们看图理解一下

大家懂的话,可以返回任意类型的数据,但是:必须是new出来的类型,因为new出来的类型不会因为出了函数空间被释放。接下来,我给大家示范一下:

来看:

成功打出来。


进程退出时,都会设置对应的退出码,线程这里为什么没有退出码呢? 

线程异常,收到信号,整个进程都会退出。 

pthread_join默认就认为函数可以调用成功,不考虑异常,异常是进程应该来考虑的事情。 

🚩关于Linux线程库

其实,C++也可以写多线程代码:

#include<iostream>
#include<thread>
#include<unistd.h>
using namespace  std;void start_routine()
{cout<<"我是新线程"<<endl;sleep(1);
}
int main()
{std::thread t1(start_routine);while(1){cout<<"我是主线程"<<endl;sleep(1);}t1.join();return 0;}

但是,在编译时必须指明要链接pthread库。

任何语言在Linux下使用多线程,必须使用pthread库。

c++的多线程,在Linux下,本质是对pthread库的封装。 


我们遗留的问题,现在有必要搞清楚了。

我们已经确认每一个线程都有自己的独立栈结构,这个栈结构在哪里?

 我们每创建一个线程,都会有一个线程的Id,这个Id看起来是个地址,究竟是什么地址?

原生线程库中有可能会存在很多的线程,要不要对这些进行有效的管理?要,管理的方式就是先描述,再组织。相对于进程的属性,线程的属性就显得非常少,因为在进程的PCB中,有一部分属性就是线程的属性。

如图,用户每在用户层面创建一个线程,就会在pthread库中创建一个属性集数据结构,该属性集指向操作系统内的一个用户级进程。

 在该属性集中一定包括线程独立栈的地址,LWP值等等。

Linux方案:用户级进程,用户关心的线程属性在库中,内核(操作系统)负责提供操作系统执行流的调度。

Linux用户级线程:轻量级进程=1:1;

用户级线程库可以当作磁盘中的一个文件(也就是一个动态库)。该线程库经过映射,可以通过mmap区域找到这个动态库。一个进程的所有线程的属性集(就是TCB结构体)都会被保存在这里。 我们可以想象成一个数组。但是我们不是通过下标查找。我们创建线程返回的地址,就是对应线程的TCP在此处的起始地址,通过这个地址就可以找到这个线程私有的栈结构。

 那创建一个线程,pthread库应该帮我们做哪个工作呢?

帮我们在pthread库中创建线程控制块(TCB)。然后返回TCB的起始地址,便于用户对线程进行操作。属于新线程私有的数据都会存储在线程私有栈中,主线程的数据则存储在共享区中。


🚀线程的局部存储。

废话不说,上码:

#include <pthread.h>
#include <iostream>
#include <unistd.h>
#include <cassert>
#include <vector>
#include <string>
#include <cstring>
using namespace std;int g_val = 100;
void *start_routine(void *args)
{while (1){cout << "new  pthread running..... g_val: " << g_val << " &g_val " << &g_val << endl;sleep(1);g_val++;}
}
int main()
{pthread_t id;int n = pthread_create(&id, nullptr, start_routine, (void *)"thread noe");assert(n == 0);(void)n;while (1){cout << "main pthread running..... g_val: " << g_val << " &g_val " << &g_val << endl;sleep(1);}pthread_join(id,nullptr);return 0;
}

全局变量被所有进程所共享,所以新线程对数据进行修改后,主线程立刻就可以读取。

接着,我们做部分代码修改

__thread int g_val = 100;

我们发现,新线程对数据进行修改,但主线程读取的数据并未改变,并且地址读取的地址也不同。

 

对比,我们发现,前后地址差别好大。这就是__thread的作用了。

 __thread的作用是什么?

在一个全局变量前加__thread,可以将一个内置类型设置为线程局部存储(就本例子而言,未添加前,数据存储在已初始化数据段;添加后,在运行时,会将数据给每个线程都拷贝一份,存储在自己的栈中,线程之间数据修改彼此互不影响。

由于存储的地址空间发生改变,空间中越往上地址越大,所以我们读取的地址理所当然的变大了。

 🚩对Linux线程简单的封装

代码如下:

#pragma once#include <iostream>
#include <string>
#include <cstring>
#include <cassert>
#include <functional>
#include  <pthread.h>
// header only 开源代码class Thread;//上下文,当成一个大号的结构体
class Context
{
public:Thread *this_;void *args_;
public:Context():this_(nullptr), args_(nullptr){}~Context(){}
};class Thread
{
public:// using func_t = std::function<void*(void*)>;typedef std::function<void*(void*)> func_t;const int num = 1024;
public:Thread(func_t func, void *args = nullptr, int number = 0): func_(func), args_(args){// name_ = "thread-";// name_ += std::to_string(number);char buffer[num];snprintf(buffer, sizeof buffer, "thread-%d", number);name_ = buffer;// 异常 == if: 意料之外用异常或者if判断// assert: 意料之中用assertContext *ctx = new Context();ctx->this_ = this;ctx->args_ = args_;int n = pthread_create(&tid_, nullptr, start_routine, ctx); //TODOassert(n == 0); //编译debug的方式发布的时候存在,release方式发布,assert就不存在了,n就是一个定义了,但是没有被使用的变量// 在有些编译器下会有warning(void)n;}// 在类内创建线程,想让线程执行对应的方法,需要将方法设置成为staticstatic void *start_routine(void *args) //类内成员,有缺省参数!{Context *ctx = static_cast<Context *>(args);void *ret = ctx->this_->run(ctx->args_);delete ctx;return ret;// 静态方法不能调用成员方法或者成员变量}void join(){int n = pthread_join(tid_, nullptr);assert(n == 0);(void)n;}void *run(void *args){return func_(args);}~Thread(){//do nothing}
private:std::string name_;func_t func_;void *args_;pthread_t tid_;
};

到这里,本篇内容就结束了,我们下期内容,再见!!。 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/35614.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java技术栈中的核心组件:Spring框架的魔力

Java作为一门成熟的编程语言&#xff0c;其生态系统拥有众多强大的组件和框架&#xff0c;其中Spring框架无疑是Java技术栈中最闪耀的明星之一。Spring框架为Java开发者提供了一套全面的编程和配置模型&#xff0c;极大地简化了企业级应用的开发流程。本文将探讨Spring框架的核…

打破数据分析壁垒:SPSS复习必备(八)

一、假设检验-基本概念 对总体提出一假设&#xff0c;然后借助样本对该假设进行检验。 原假设 H0: 在统计学中,把需要通过样本去推断正确与否的命题,称为原假设,又称零假设.它常常是根据已有资料或经过周密考虑后确定的. 备择假设H1: 与原假设对立的假设. 显著性水平(signi…

兰州市红古区市场监管管理局调研食家巷品牌,关注细节,推动进步

近日&#xff0c;兰州市红古区市场监管管理局临平凉西北绿源电子商务有限公司进行了深入视察&#xff0c;为企业发展带来了关怀与指导。 食家巷品牌作为平凉地区特色美食的代表之一&#xff0c;一直以来凭借其纯手工工艺和独特的风味&#xff0c;在市场上占据了一席之地。领导…

Linux常用环境变量PATH

Linux常用环境变量 一、常用的默认的shell环境变量二、环境变量 PATH三、持久化修改环境变量四、常用的环境变量 一、常用的默认的shell环境变量 1、当我们在shell命令行属于一个命令&#xff0c;shell解释器去解释这个命令的时候&#xff0c;需要先找到这个命令. 找到命令有两…

统信UOS上鼠标右键菜单中添加自定义内容

原文链接&#xff1a;统信UOS上鼠标右键菜单中添加自定义内容 Hello&#xff0c;大家好啊&#xff01;今天给大家带来一篇关于在统信UOS桌面操作系统上鼠标右键菜单中添加自定义内容的文章。通过自定义鼠标右键菜单&#xff0c;可以大大提升日常操作的效率和便捷性。本文将详细…

面向对象修炼手册(四)(多态与空间分配)(Java宝典)

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;面向对象修炼手册 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 前言 1 多态 1.1 多态的形式&…

节省一个小目标,电手官方一键「傻瓜式」重装系统

大伙儿下午好&#xff0c;这是一篇负收益的广子。 没错&#xff0c;电手上线了重装 Windows 系统的工具类软件。 和我们顶头老大傲梅分区助手一样&#xff0c;不含捆绑&#xff0c;上手简单&#xff0c;完全免费&#xff0c;用爱发电。 众所周知&#xff0c;微软对于系统的更…

韩顺平0基础学java——第30天

p600-611 坦克大战&#xff01; 艰难推进中 坦克大战-子弹 发射子弹 1.当发射一颗子弹后&#xff0c;就相当于启动一个线程 2.玩家拥有子弹对象&#xff0c;当按下J时&#xff0c;就启动发射行为&#xff08;线程&#xff09;&#xff0c;让子弹不停移动&#xff0c;形成…

最新!计算机类SCI期刊全名单!你想发的顶刊都在这里

【SciencePub学术】近日&#xff0c;2023JCR正式发布&#xff0c;最受瞩目就是各类期刊的最新影响因子排名&#xff0c;本期&#xff0c;小编对计算机类的期刊做了一个整理&#xff0c;供计算机方向的研究学者们参考&#xff01; 来源&#xff1a;WOS数据库官网 完整名单 ※ 本…

离线安装docker-v26.1.4,compose-v2.27.0

目录 ​编辑 1.我给大家准备好了提取即可 2.安装docker和compose 3.解压 4.切换目录 5.执行脚本 6.卸载docker和compose 7.执行命令 “如果您在解决类似问题时也遇到了困难&#xff0c;希望我的经验分享对您有所帮助。如果您有任何疑问或者想分享您的经历&#xff0c;…

投屏软件免费版有没有?十款好用的手机投屏软件(2024更新)

“我想将手机免费投屏到电脑上&#xff0c;但是不知道怎么操作&#xff1f;有哪些图片软件免费版可以帮我解决这个问题吗&#xff1f;”在互联网时代&#xff0c;投屏软件的应用越来越广泛&#xff0c;使我们能够方便地将手机、平板等设备的内容投射到更大的屏幕上&#xff0c;…

Linux 网络:网卡 promiscuous 模式疑云

文章目录 1. 前言2. 问题场景3. 问题定位和分析4. 参考资料 1. 前言 限于作者能力水平&#xff0c;本文可能存在谬误&#xff0c;因此而给读者带来的损失&#xff0c;作者不做任何承诺。 2. 问题场景 调试 Marvell 88E6320 时&#xff0c;发现 eth0 出人意料的进入了 promis…

在Ubuntu上安装Python3

安装 python3 pip sudo apt -y install python3 python3-pip升级 pip python3 -m pip install --upgrade pip验证查看版本 python3 --version

LabVIEW技术交流-控件的禁用属性与Mouse Up事件的一个坑

问题来源 我们平时对控件Mouse Up事件触发使用场景不多&#xff0c;可能在按钮控件上会偶尔用到。在一些场景中&#xff0c;我们用按钮的Mouse Up触发事件&#xff0c;但是又希望在某些限制条件下&#xff0c;按钮会被禁用而不能触发事件。 可是当我们禁用按钮时&#xff0c;它…

第三十一篇——大数据1:从四个特征把握大数据的本质

目录 一、背景介绍二、思路&方案三、过程1.思维导图2.文章中经典的句子理解3.学习之后对于投资市场的理解4.通过这篇文章结合我知道的东西我能想到什么&#xff1f; 四、总结五、升华 一、背景介绍 大数据的特征&#xff0c;如果我们没有一个清晰的边界以及明确的定位&…

grpc学习golang版( 四、多服务示例)

系列文章目录 第一章 grpc基本概念与安装 第二章 grpc入门示例 第三章 proto文件数据类型 第四章 多服务示例 文章目录 一、前言二、定义proto文件三、编写server服务端四、编写Client客户端五、测试六、示例代码 一、前言 多服务&#xff0c;即一个rpc提供多个服务给外界调用…

大语言模型(LLM)LangChain介绍

LangChain是一个利用大语言模型的能力开发各种下游应用的开源框架&#xff0c;它的核心理念是为各种大语言模型应用实现通用的接口&#xff0c;简化大语言模型应用的开发难度&#xff0c;主要的模块示意图为&#xff1a; Index&#xff1a;提供了各类文档导入、文本拆分、文本向…

STM32中五个时钟源:HSI、HSE、LSI、LSE、PLL

时钟系统是处理器的核心&#xff0c;或者说时钟是单片机的心脏。 1.单片机内部需要储存器、累加器&#xff0c;这些都需要逻辑门电路。比如锁存器就是一个D触发器&#xff0c;而触发器的置1、清0、置数的功能都需要跳变沿。D触发器就是上升沿后存入数据&#xff0c;而这个上升…

SAP CO11N BAPI_PRODORDCONF_CREATE_TT连续报工异步更新导致COGI解决方案

背景&#xff1a; 之前上一个项目上有同事碰到一个问题&#xff0c;外围接口数据进入SAP&#xff0c;可能会对同一工单同一工序进行连续多次报工&#xff0c;并且工序控制码配置的是会自动货物移动的&#xff0c;所以正常来说&#xff0c;调用完BAPI完之后除了报工数量会更新之…

需求之 实现获取调试信息在h5页面,在手机端可以查看调试(二)

事实证明 chatgpt很好用&#xff0c;有不懂的问题可以问它 https://zhuanlan.zhihu.com/p/690118775 国内外9个免费的ChatGPT网站 我筛选出来的比较好用免费的网站 fchat.dykyzdh.cn/ 这个也可以 阿里云的 通义灵码 在vscode中安装使用 而且阿里云有一个产品&#xff0c;可以…