【STM32】时钟树系统

1.时钟树简介

在这里插入图片描述

1.1五个时钟源
  1. LSI是低速内部时钟,RC振荡器,频率为32kHz左右。供独立看门狗和自动唤醒单元使用。

  2. LSE是低速外部时钟,接频率为32.768kHz的石英晶体。这个主要是RTC的时钟源。

  3. HSE是高速外部时钟,可接石英*/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~26MHz*,一般是8MHz。HSE也可以直接做为系统时钟或者PLL输入。

  4. HSI是高速内部时钟,RC振荡器,频率为16MHz。可以直接作为系统时钟或者用作PLL输入。

  5. PLL为锁相环倍频输出。STM32F4有两个PLL:

    1) 主PLL(PLL)由HSE或者HSI提供时钟信号,并具有两个不同的输出时钟。

    第一个输出PLLP用于生成高速的系统时钟(最高168MHz)

    第二个输出PLLQ用于生成USB OTG FS的时钟(48MHz),随机数发生器的时钟和SDIO时钟。

    2)专用PLL(PLLI2S)用于生成精确时钟,从而在I2S接口实现高品质音频性能。

1.2主PLL时钟详解

主PLL时钟由HSE或者HSI提供时钟输入信号。(一般我们选择HSE)

经过一个分频系数为M(263)的分频器后,成为VCO的时钟输入,VCO的时钟必须在12M之间。

VCO输入时钟经过VCO倍频因子N倍频后,成为VCO时钟输出。

VCO输出时钟之后有三个分频因子:PLLCLK分频因子p(p可以取值2、4、6、8),USB OTG FS/RNG/SDIO时钟分频因子Q(Q可以取值4~15),分频因子R(F446才有,F407没有)。

PLL的时钟配置经过,稍微整理下可由如下公式表达:

VCOCLK_IN = PLLCLK_IN / M = HSE / 8 = 1M

VCOCLK_OUT = VCOCLK_IN * N = 1M * 336 = 336M

PLLCLK_OUT=VCOCLK_OUT/P=336/2=168M

USBCLK = VCOCLK_OUT/Q=336/7=48

简化为:
P L L C L K = H S E ➗ M ✖ N ➗ P PLLCLK= HSE➗M✖N➗P PLLCLK=HSEMNP
取HSE=8MHz,M=8,N=336,P=2,得PLLCLK=168MHz。

1.3系统时钟SYSCLK

系统时钟来源可以是:HSI、PLLCLK、HSE,具体的由时钟配置寄存器RCC_CFGR的SW位配置。 我们这里设置系统时钟:SYSCLK = PLLCLK =168M。如果系统时钟是由HSE经过PLL倍频之后的PLLCLK得到, 当HSE出现故障的时候,系统时钟会切换为HSI=16M,直到HSE恢复正常为止。如果开启了CSS(时钟安全系统)功能的话,那么可以当HSE故障时,在CSS中断里面采取补救措施,使用HSI,重新设置系统频率为168M,让系统恢复正常使用。 但这只是权宜之计,并非万全之策,最好的方法还是要采取相应的补救措施并报警,然后修复HSE。临时使用HSI只是为了把损失降低到最小,毕竟HSI较于HSE精度还是要低点。

1.4AHB总线时钟HCLK

系统时钟SYSCLK经过AHB预分频器分频之后得到时钟叫AHB总线时钟,即HCLK,分频因子可以是:[1,2,4,8,16,64,128,256,512], 具体的由时钟配置寄存器RCC_CFGR的HPRE位设置。片上大部分外设的时钟都是经过HCLK分频得到,至于AHB总线上的外设的时钟设置为多少, 得等到我们使用该外设的时候才设置,我们这里只需粗线条的设置好APB的时钟即可。我们这里设置为1分频,即HCLK=SYSCLK=168M。

1.5APB2总线时钟PCLK2

APB2总线时钟PCLK2由HCLK经过高速APB2预分频器得到,分频因子可以是:[1,2,4,8,16],具体由时钟配置寄存器RCC_CFGR的PPRE2位设置。 PCLK2属于高速的总线时钟,片上高速的外设就挂载到这条总线上,比如全部的GPIO、USART1、SPI1等。至于APB2总线上的外设的时钟设置为多少, 得等到我们使用该外设的时候才设置,我们这里只需粗线条的设置好APB2的时钟即可。我们这里设置为2分频,即PCLK2 = HCLK /2= 84M。

1.6APB1总线时钟PCLK1

APB1总线时钟PCLK1由HCLK经过低速APB预分频器得到,分频因子可以是:[1,2,4,8,16],具体由时钟配置寄存器RCC_CFGR的PPRE1位设置。 PCLK1属于低速的总线时钟,最高为42M,片上低速的外设就挂载到这条总线上,比如USART2/3/4/5、SPI2/3,I2C1/2等。至于APB1总线上的外设的时钟设置为多少, 得等到我们使用该外设的时候才设置,我们这里只需粗线条的设置好APB1的时钟即可。我们这里设置为4分频,即PCLK1= HCLK/4 = 42M。

1.7RTC时钟

RTCCLK 时钟源可以是 HSE 1 MHz( HSE 由一个可编程的预分频器分频)、 LSE 或者 LSI时钟。 选择方式是编程 RCC 备份域控制寄存器 (RCC_BDCR) 中的 RTCSEL[1:0] 位和 RCC时钟配置寄存器 (RCC_CFGR) 中的 RTCPRE[4:0]位。 所做的选择只能通过复位备份域的方式修改。我们通常的做法是由LSE给RTC提供时钟,大小为32.768KHZ。LSE由外接的晶体谐振器产生, 所配的谐振电容精度要求高,不然很容易不起震。

1.8独立看门狗时钟

独立看门狗时钟由内部的低速时钟LSI提供,大小为32KHZ。

1.9I2S时钟

I2S时钟可由外部的时钟引脚I2S_CKIN输入,也可由专用的PLLI2SCLK提供,具体的由RCC 时钟配置寄存器 (RCC_CFGR)的I2SSCR位配置。 一般我们都是使用专用PLLI2SCLK提供。

2.0PHY以太网时钟

F407要想实现以太网功能,除了有本身内置的MAC之外,还需要外接一个PHY芯片,常见的PHY芯片有DP83848和LAN8720, 其中DP83848支持MII和RMII接口,LAN8720只支持RMII接口。 使用RMII接口的好处是使用的IO减少了一半,速度还是跟MII接口一样。当使用RMII接口时,PHY芯片只需输出一路时钟给MCU即可, 如果是MII接口,PHY芯片则需要提供两路时钟给MCU。

2.1USB PHY 时钟

F407的USB没有集成PHY,要想实现USB高速传输的话,必须外置USB PHY芯片,常用的芯片是USB3300。当外接USB PHY芯片时,PHY芯片需要给MCU提供一个时钟。

在这里插入图片描述

在这里插入图片描述

2.2MCO时钟输出

MCO是microcontroller clock output的缩写,是微控制器时钟输出引脚,主要作用是可以对外提供时钟,相当于一个有源晶振。 F407中有两个MCO,由PA8/PC9复用所得。MCO1所需的时钟源通过 RCC 时钟配置寄存器 (RCC_CFGR) 中的 MCO1PRE[2:0] 和MCO1[1:0]位选择。 MCO2所需的时钟源通过 RCC 时钟配置寄存器 (RCC_CFGR) 中的 MCO2PRE[2:0] 和 MCO2位选择。有关MCO的IO、时钟选择和输出速率的具体信息如下表所示:

时钟输出IO时钟来源最大输出速率
MCO1PA8HSI、LSE、HSE、PLLCLK100M
MCO2PC9HSE、PLLCLK、SYSCLK、PLLI2SCLK100M

2.使用标准库配置系统时钟

2.1分析SystemInit()函数

如果我们使用库函数编程,当程序来到main函数之前,启动文件:startup_stm32f40xxx.s已经调用SystemInit()函数把系统时钟初始化成168MHZ, SystemInit()在库文件:system_stm32f4xx.c中定义。那它是使用哪种方式配置系统时钟的呢?我们看看源码一探究竟。

已删除未编译的代码
/*** @brief  Setup the microcontroller system*         Initialize the Embedded Flash Interface, the PLL and update the *         SystemFrequency variable.* @param  None* @retval None*/
void SystemInit(void)
{/* Reset the RCC clock configuration to the default reset state ------------*//* Set HSION bit */ //打开HSIRCC->CR |= (uint32_t)0x00000001;/* Reset CFGR register */ //清除一些参数RCC->CFGR = 0x00000000;/* Reset HSEON, CSSON and PLLON bits */ //关闭HSE CSS PLLRCC->CR &= (uint32_t)0xFEF6FFFF;/* Reset PLLCFGR register */  //清楚关于PLL的参数RCC->PLLCFGR = 0x24003010;/* Reset HSEBYP bit */  //关闭HSE 时钟旁路RCC->CR &= (uint32_t)0xFFFBFFFF;/* Disable all interrupts */ //关闭所有中断标志RCC->CIR = 0x00000000;/* Configure the System clock source, PLL Multiplier and Divider factors, AHB/APBx prescalers and Flash settings ----------------------------------*/SetSysClock();//设置中断向量表/* Configure the Vector Table location add offset address ------------------*/SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */
}

这些函数内部是直接配置寄存器的方式,所以我们逐句分析,具体进行源码注释。

/*** @brief  Configures the System clock source, PLL Multiplier and Divider factors, *         AHB/APBx prescalers and Flash settings* @Note   This function should be called only once the RCC clock configuration  *         is reset to the default reset state (done in SystemInit() function).   * @param  None* @retval None*/
static void SetSysClock(void)
{
#if defined(STM32F40_41xxx) || defined(STM32F427_437xx) || defined(STM32F429_439xx) || defined(STM32F401xx) || defined(STM32F412xG) || defined(STM32F413_423xx) || defined(STM32F446xx)|| defined(STM32F469_479xx)
/******************************************************************************/
/*            PLL (clocked by HSE) used as System clock source                */
/******************************************************************************/__IO uint32_t StartUpCounter = 0, HSEStatus = 0;/* Enable HSE */  //打开HSERCC->CR |= ((uint32_t)RCC_CR_HSEON);//等待HSE稳定/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++;} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){HSEStatus = (uint32_t)0x01;}else{HSEStatus = (uint32_t)0x00;}if (HSEStatus == (uint32_t)0x01){//调压器输出电压级别选择/* Select regulator voltage output Scale 1 mode */RCC->APB1ENR |= RCC_APB1ENR_PWREN;PWR->CR |= PWR_CR_VOS;/* HCLK = SYSCLK / 1*/  //SYSCLK经过AHBPRESC分频器到HCLK 配置AHBPRESC=1RCC->CFGR |= RCC_CFGR_HPRE_DIV1;#if defined(STM32F40_41xxx) || defined(STM32F427_437xx) || defined(STM32F429_439xx) ||  defined(STM32F412xG) || defined(STM32F446xx) || defined(STM32F469_479xx)    /* PCLK2 = HCLK / 2*/RCC->CFGR |= RCC_CFGR_PPRE2_DIV2; //HCLK经过2分频后得到APB2/* PCLK1 = HCLK / 4*/RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;//HCLK经过4分频后得到APB1
#endif /* STM32F40_41xxx || STM32F427_437x || STM32F429_439xx  || STM32F412xG || STM32F446xx || STM32F469_479xx */#if defined(STM32F40_41xxx) || defined(STM32F427_437xx) || defined(STM32F429_439xx) || defined(STM32F401xx) || defined(STM32F469_479xx)    /* Configure the main PLL */  //选择HSE为PLL输入时钟信号,配置分频系数M,倍频系数N,分频系数P,分频系数QRCC->PLLCFGR = PLL_M | (PLL_N << 6) | (((PLL_P >> 1) -1) << 16) |(RCC_PLLCFGR_PLLSRC_HSE) | (PLL_Q << 24);
#endif /* STM32F40_41xxx || STM32F401xx || STM32F427_437x || STM32F429_439xx || STM32F469_479xx */   /* Enable the main PLL */  //打开主PLLRCC->CR |= RCC_CR_PLLON;/* Wait till the main PLL is ready */ //等待主PLL就绪while((RCC->CR & RCC_CR_PLLRDY) == 0){}#if defined(STM32F40_41xxx)  || defined(STM32F412xG)  /* Configure Flash prefetch, Instruction cache, Data cache and wait state */FLASH->ACR = FLASH_ACR_PRFTEN | FLASH_ACR_ICEN |FLASH_ACR_DCEN |FLASH_ACR_LATENCY_5WS;
#endif /* STM32F40_41xxx  || STM32F412xG *//* Select the main PLL as system clock source */ //选择主PLL作为系统时钟RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= RCC_CFGR_SW_PLL;/* Wait till the main PLL is used as system clock source */ //等待系统时钟readywhile ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS ) != RCC_CFGR_SWS_PLL);{}}else{ /* If HSE fails to start-up, the application will have wrong clockconfiguration. User can add here some code to deal with this error */}
}
  • 我们在魔术棒中定义了宏STM32F40_41xxx.
  • 我们接的HSE是8MHz,但是我们发现PLL_M宏定义是25(这个宏定义也在该文件中),所以最终PLLCLK肯定不是168MHz.

我们不妨做一些验证:

2.2验证SystemInit()函数

看到有一个函数,好像可以读取时钟频率:

void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)

我们调用后

	RCC_ClocksTypeDef RCC_Clocks;RCC_GetClocksFreq(&RCC_Clocks);

进行调试

在这里插入图片描述

发现好像没有问题啊。其实我们看函数源码就会发现,内部的时钟获取也是通过那些参数计算的,就是一个逆运算过程,它根本就不能获取到真正的频率,除非那些参数配置与实际没有问题。显然,现在我们配置的PLL_M=25是有问题的,与实际外接的8MHz不相符。

那我们怎么样才能真正配置的时钟呢,没错就是用MCO时钟输出。

#ifndef __MCO_H
#define __MCO_H#ifdef __cplusplus
extern "C"{#endif#include "stm32f4xx.h"#define MCO1_PIN             GPIO_Pin_8
#define MCO1_GPIO_Port       GPIOA
#define MCO1_GPIO_CLK        RCC_AHB1Periph_GPIOA#define MCO2_PIN             GPIO_Pin_9
#define MCO2_GPIO_Port       GPIOC
#define MCO2_GPIO_CLK        RCC_AHB1Periph_GPIOCvoid MCO1_GPIO_Config(void);
void MCO2_GPIO_Config(void);#ifdef __cplusplus
}
#endif#endif
#include "mco.h"// MCO1 PA8 GPIO 初始化
void MCO1_GPIO_Config(void)
{GPIO_InitTypeDef GPIO_InitStructure;RCC_AHB1PeriphClockCmd(MCO1_GPIO_CLK, ENABLE);// MCO1 GPIO 配置GPIO_InitStructure.GPIO_Pin = MCO1_PIN;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用推挽输出GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;GPIO_Init(MCO1_GPIO_Port, &GPIO_InitStructure);
}// MCO2 PC9 GPIO 初始化
void MCO2_GPIO_Config(void)
{GPIO_InitTypeDef GPIO_InitStructure;RCC_AHB1PeriphClockCmd(MCO2_GPIO_CLK, ENABLE);// MCO2 GPIO 配置GPIO_InitStructure.GPIO_Pin = MCO2_PIN;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用推挽输出GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;GPIO_Init(MCO2_GPIO_Port, &GPIO_InitStructure);
}
	MCO1_GPIO_Config();MCO2_GPIO_Config();// MCO1 输出PLLCLKRCC_MCO1Config(RCC_MCO1Source_PLLCLK, RCC_MCO1Div_1);// MCO2 输出SYSCLKRCC_MCO2Config(RCC_MCO2Source_SYSCLK, RCC_MCO1Div_1);

这样,我们使用示波器测量MCO1就可以看真实的PLLCLK。

在这里插入图片描述

示波器测试的频率是53.2MHz。因为
8 ➗ 25 ✖ 336 ➗ 2 = 53.76 8➗25✖336➗2=53.76 8➗25✖336➗2=53.76
正好吻合,但是不知道为什么MCO2使用示波器测不出来。。。。。

2.3修改SystemInit()函数

现在我们把

PLL_M      25

修改为:

PLL_M      8

使用同样的方式测得如下167MHz,并且在MCO1和MCO2测得相同的值。

在这里插入图片描述

2.4使用标准库配置系统时钟

我们加载的标准库文件,默认情况下是只读的,上文是强行修改文件属性后修改的,但是这种行为不推荐。所以,最好我们自己可以使用标准库函数来写一个函数用于配置系统时钟,毕竟SystemInit()函数中是直接配置的寄存器。

编码要点:

0、反初始化(这个不能省)

1、 开启HSE/HSI ,并等待 HSE/HSI 稳定

2、 设置 AHB、APB2、APB1的预分频因子

3、 设置PLL的时钟来源,设置VCO输入时钟 分频因子PLL_M,设置VCO输出时钟倍频因子PLL_N,设置PLLCLK时钟分频因子PLL_P,设置OTG FS,SDIO,RNG 时钟分频因子 PLL_Q。

4、 开启PLL,并等待PLL稳定

5、 把PLLCK切换为系统时钟SYSCLK

6、 读取时钟切换状态位,确保PLLCLK被选为系统时钟

#include "bsp_clk.h"/*
* 使用HSE时,设置系统时钟的步骤
* 0、反初始化(这个不能省)
* 1、开启HSE ,并等待 HSE 稳定
* 2、设置 AHB、APB2、APB1的预分频因子
* 3、设置PLL的时钟来源
*    设置VCO输入时钟 分频因子        m
*    设置VCO输出时钟 倍频因子        n
*    设置PLLCLK时钟分频因子          p
*    设置OTG FS,SDIO,RNG时钟分频因子 q
* 4、开启PLL,并等待PLL稳定
* 5、把PLLCK切换为系统时钟SYSCLK
* 6、读取时钟切换状态位,确保PLLCLK被选为系统时钟
*//*
* m: VCO输入时钟 分频因子,取值2~63
* n: VCO输出时钟 倍频因子,取值192~432
* p: PLLCLK时钟分频因子  ,取值2,4,6,8
* q: OTG FS,SDIO,RNG时钟分频因子,取值4~15
* 函数调用举例,使用HSE设置时钟
* SYSCLK=HCLK=168M,PCLK2=HCLK/2=84M,PCLK1=HCLK/4=42M
* HSE_SetSysClock(25, 336, 2, 7);
* HSE作为时钟来源,经过PLL倍频作为系统时钟,这是通常的做法* 系统时钟超频到216M爽一下
* HSE_SetSysClock(25, 432, 2, 9);
*/
void HSE_SetSysClock(uint32_t m, uint32_t n, uint32_t p, uint32_t q)
{//0、反初始化(这个不能省)RCC_DeInit();//1、开启HSE ,并等待 HSE 稳定RCC_HSEConfig(RCC_HSE_ON);if(SUCCESS==RCC_WaitForHSEStartUp()){// 调压器电压输出级别配置为1,以便在器件为最大频率// 工作时使性能和功耗实现平衡RCC->APB1ENR |= RCC_APB1ENR_PWREN;PWR->CR |= PWR_CR_VOS;//2、设置 AHB、APB2、APB1的预分频因子RCC_HCLKConfig(RCC_SYSCLK_Div1);RCC_PCLK1Config(RCC_HCLK_Div4);RCC_PCLK2Config(RCC_HCLK_Div2);/*3、设置PLL的时钟来源
*    设置VCO输入时钟 分频因子        m
*    设置VCO输出时钟 倍频因子        n
*    设置PLLCLK时钟分频因子          p
*    设置OTG FS,SDIO,RNG时钟分频因子 q*/RCC_PLLConfig(RCC_PLLSource_HSE,m,n,p,q);//4、开启PLL,并等待PLL稳定RCC_PLLCmd(ENABLE);while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) {}/*-----------------------------------------------------*/// 配置FLASH预取指,指令缓存,数据缓存和等待状态FLASH->ACR = FLASH_ACR_PRFTEN| FLASH_ACR_ICEN| FLASH_ACR_DCEN| FLASH_ACR_LATENCY_5WS;/*-----------------------------------------------------*/// 5、把PLLCK切换为系统时钟SYSCLKRCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//6、读取时钟切换状态位,确保PLLCLK被选为系统时钟if(0x08==RCC_GetSYSCLKSource()){}}
}

特别注意:

  • 配置之前需要进行RCC_DeInit(),因为在启动文件中配置过一次
  • 除了时钟相关的配置外,其中还有PWR、FLASH的配置,其实在启动文件中还有向量表的配置SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET,这个后面再详解。
  • CSS功能的使能,RCC_ClockSecuritySystemCmd(FunctionalState NewState)使用这个函数,我们目前还没有ENABLE。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/31829.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Webstorm vue项目@路径不能跳转到对应资源,提示Cannot find declaration to go to

Webstorm vue项目路径不能跳转到对应资源,提示Cannot find declaration to go to 我们 ctrl加鼠标左键点击方法会失效&#xff0c;看了网上很多教程在说需要在此处配置一下webpack.config.js的文件路径&#xff0c;而且指向了node_modules\vue\cli-service\webpack.config.js 我…

外贸SEO工具有哪些推荐?

"我们作为一个专业的Google SEO团队&#xff0c;比较推荐一下几个适合外贸SEO的工具。Ahrefs 是一个非常强大的工具&#xff0c;可以帮助你深入分析竞争对手的表现&#xff0c;找到有潜力的关键词&#xff0c;还可以监控你的网站链接状况。另外&#xff0c;SEMrush 也很不…

Android基础到进阶UI祖父级 ViewGroup介绍+实用

1.创建CustomLayout继承ViewGroup /** 编写自定义ViewGroup的示例。 */ public class CustomLayout extends ViewGroup { // private int childHorizontalSpace 20; // private int childVerticalSpace 20; private int childHorizontalSpace; private int childVert…

Android企业级实战-界面篇-5

3.colors.xml文件内容&#xff08;此案例可用&#xff09; #ffb2b2b2 #ff14c4bc color/jimeng_text_tertiary_light color/jimeng_green_light color/jimeng_background_secondary_light color/jimeng_background_secondary_light #7f4eb7ba 4.strings.xml文件内容&…

内容安全复习 5 - 深在线社交网络分析与舆情监测

文章目录 在线社交网络分析什么是在线社交网络什么是在线社交网络分析社交网络信息传播基本模型影响力模型传染模型影响力计算公式 网络舆情监测网络舆情概述网络舆情监测系统 在线社交网络分析 什么是在线社交网络 在线社交网络是一种在信息网络上由社会个体集合及个体之间的…

[19] Opencv_CUDA应用之 基于形状的对象检测与跟踪

Opencv_CUDA应用之 基于形状的对象检测与跟踪 形状可以用作全局特征检测具有不同形状的物体&#xff0c;可以是直线、多边形、圆形或者任何其他不规则形状利用对象边界、边缘和轮廓可以检测具有特定形状的对象本文将使用Canny边缘检测算法和Hough变换来检测两个规则形状&#…

scapy修改TCP标志位

文章目录 TCP标志位scapy修改标志位设置标志位清除标志位示例 TCP标志位 TCP报文段结构如图所示 下面介绍一些重要的标志位&#xff1a; URG (Urgent): 紧急指针&#xff08;Urgent Pointer&#xff09;有效。当URG标志位设置为1时&#xff0c;表示TCP报文段中有紧急数据需要处…

你好,复变函数1.0

输入时用后缀&#xff0c;开头空格 #include <easyx.h> #include <stdio.h> #define PI 3.141592653589793 #define E 2.718281828459045 #define K (1.0 / 256.0) #define K_1 256.0 //#define LINE//决定函数是用线画还是用点画 struct C {double i;double r;…

apache activeMq

https://blog.csdn.net/qq_29651203/article/details/108487924 游览器输入地址: http://127.0.0.1:8161/admin/ 访问activemq管理台 账号和密码默认为: admin/admin# yml配置的密码也是如下的密码 activemq:url: failover:(tcp://localhost:61616)username: adminpassword: ad…

手撕排序2--选择排序(直接选择+堆排序

目录&#xff1a; 1.直接选择排序 的实现及分析 2.堆排序 的实现及分析 1.直接选择排序 1.1基本思想&#xff1a; 每一次从待排序的数据元素中选出最小&#xff08;或最大&#xff09;的一个元素&#xff0c;存放在序列的起始位置&#xff0c;直到全部待排序的数据元素排完…

【启明智显产品介绍】Model3C工业级HMI芯片详解专题(三)通信接口

Model3C 是一款基于 RISC-V 的高性能、国产自主、工业级高清显示与智能控制 MCU, 集成了内置以太网控制器&#xff0c;配备2路CAN、4路UART、5组GPIO、2路SPI等多种通信接口&#xff0c;能够轻松与各种显示设备连接&#xff0c;实现快速数据传输和稳定通信&#xff0c;可以与各…

R语言——类与对象

已知2024年4月23日是星期五&#xff0c;编写一个函数day.in.a.week (x, y,z)&#xff0c;参数x和y和z分别代表年月日&#xff0c;判断这一天是否存在&#xff08;例如&#xff0c;2018年没有2月29日&#xff0c;也没有11月31日&#xff09;&#xff0c;如果不存在&#xff0c;返…

Howtrader在服务器上安装后遇到的问题

response:{"code":-1021,"msg":"Timestamp for this request is outside of the recvWindow."} 1.安装 NTP 服务 如果你的系统还没有安装 NTP&#xff0c;可以通过以下命令安装&#xff1a; sudo apt update sudo apt install ntp2.配置 NTP …

ELK+Filebeat+kafka+zookeeper构建海量日志分析平台

ELK是什么&#xff08;What&#xff09;&#xff1f; ELK组件介绍 ELK 是ElasticSearch开源生态中提供的一套完整日志收集、分析以及展示的解决方案&#xff0c;是三个产品的首字母缩写&#xff0c;分别是ElasticSearch、Logstash 和 Kibana。除此之外&#xff0c;FileBeat也是…

【面试干货】抽象类的意义与应用

【面试干货】抽象类的意义与应用 1、为其他子类提供一个公共的类型2、封装子类中重复定义的内容3、定义抽象方法&#xff0c;子类虽然有不同的实现&#xff0c;但是定义时一致的4、示例代码 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 在…

kettle从入门到精通 第七十二课 ETL之kettle 三谈http post(含文件上传),彻底掌握参数传递

场景&#xff1a;群里有个小伙伴在使用http post步骤调用接口时遇到问题&#xff0c;postman调用正常&#xff0c;但是kettle中调用异常。 解决方案&#xff1a;既然postman调用接口正常&#xff0c;肯定是http post步骤中某些参数设置的不正确导致的。那就把常用的方式都梳理下…

探索AI前沿:本地部署GPT-4o,打造专属智能助手!

目录 1、获取API_key 2、开始调用 3、openai连接异常 4、解决方法&#xff1a; 5、调用GPT-4o 1、获取API_key 这里就不多赘述了&#xff0c;大家可以参考下面这篇博客 怎么获取OpenAI的api-key【人工智能】https://blog.csdn.net/qq_51625007/article/details/13763274…

Open WebUI的SearXNG网络搜索配置【403报错解决方法】

1.拉取SearXNG镜像 docker pull searxng/searxng 2.在Docker Desktop的Images界面中启动searxng容器 3.查看searxng是否部署成功 在Docker Desktop的Containers界面中&#xff0c;查看searxgn暴露的端口。 http://localhost:31292/ 4.修改settings.yml配置参数 在Docker De…

[火灾警报系统]yolov5_7.0-pyside6火焰烟雾识别源码

国内每年都会发生大大小小的火灾&#xff0c;造成生命、财产的损失。但是很多火灾如果能够早期发现&#xff0c;并及时提供灭火措施&#xff0c;将会大大较小损失。本套源码采用yolov5-7.0目标检测算法结合pyside6可视化界面源码&#xff0c;当检测到火灾时&#xff0c;能否发出…